INTRODUCING

DRAGON

MACHINE CODE

by ok

' &H26 &H20 &\-\’)_’)_

,,,,,
“““““

BIAN SINCLAR

Introducing Dragon
Machine Code

lan Sinclair

GRANADA

London Toronta Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street. London WI1X 3LA

First published in Great Britain by
Granada Publishing 1984

Copyright©1984 by lan Sinclair

British Library Cataloguing in Publication Data
Sinclair, lan Robertson

Introducing Dragon machinc code

I. Dragon (Computer)— Programming

I. Title

001.6425 QA76.8.D

ISBN® 246-12324 9

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by Mackays of Chatham. Kent

All rights reserved. No part of this publication may
be reproduced. stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise.
without the prior permission of the publishers.

Horihamptonshire
Libraries

OO0 bURS

Contents

Preface

O W d O LA b W

ROM, RAM, Bytes and Bits

Digging Inside Dragon

The Microprocessor

6809 Details

Register Actions

Taking a Bigger Byte

Ins and Outs and Roundabouts

Debugging, Checking, DEMON and DASM
Last Round-Up

Appendix A: How Numbers Are Stored

Appendix B: Assemblers, Disassemblers and Monitors

Appendix C:
Appendix D:
Appendix E:
Appendix F: A Few ROM and RAM Addresses
Appendix G:
Appendix H:

Hex and Denary Conversions
The Instruction Set .
Addressing Methods of the 6809

Magazines and Books
A Useful Disassembler

Index

i
129
131
132
134
138
139
141
142
149

Preface

Many computer users are content to program in BASIC for all of
theircomputinglives. A large number of others, however, are eager
to find out more about computing and their computer than the use
of BASIC can lead to. Few, however, make much progress to the use
of machine code, which allows so much more control over the
computer. The reason for this, to my mind. is that so many books
which deal with machine code programming seem to start with the
assumption that the reader is already familiar with the ideas and the
words of such programming. In addition, many of these bookstreat
machine code programming as a study in itself, leaving the reader
with little clue as to how to apply machine code to his or her
computer.

This book has two main aims. One is to introduce the Dragon
owner to some of the details of how the Dragon works. so allowing
for more effective programming even without delving into machine
code. The second aim is to introduce the methods of machine code
programming in a simple way. I must emphasise the word
‘introduce’. Nosingle book can tell you all about machine code, even
the machine code for one computer. All I canclaimis that | can get
you started. Getting started means that you will be able to write
short machine code routines, understand machine code routines
that yousee printed in magazines, and generally make more effective
use of your Dragon. It also means that you will be able to make use
of the many more advanced books on the subject.

Understanding the operating system of your Dragon, and having
the ability to work in machine code can open up an entirely new
world of computing to you. This is why you find that most of the
really spectacular games are written in machine code. You will also
find that many programs which are written mainly in BASIC will
incorporate pieces of machine code in order to make use of its
greater speed and better control of the computer.

viii Preface

Iam most grateful to several people, alltop-notch Dragon tamers,
for discussions about details of the Dragon operatingsystemand the
6809 microprocessor. These include Mr Opyrchal of Compusense,
and Mike James, well known for his books and articles, and author
of the 6809 Companion. | must also thank some of the many people
who made the production of this book possible. Of these, Richard
Miles of Granada Publishing, and Robin Swinbank of Welbeck P.
R. combined to get me a Dragon and keep it fed. Sue Moore and
Julian Grover of Granada Publishing then did their usual miracles
of meticulous effort on my manuscript. 1 should also mention that
this book was completed before the Dragon assembler program,
PREAM. was available, so that it was not possible to provide details
of this product.

lan Sinclair

Chapter One
ROM, RAM, Bytes and

Bits

One of the things thatdiscourage computer users from attempts to
go beyond BASIC is the number of new words thatspring up. The
writers of many books on computing, especially on machine code
computing, seem to assume that the reader has an electronics
background and will understand all of the terms. I shallassumethat
you have no such background. All that I shall assume is that you
possess a Dragon, either the 32 or the 64, and that you have some
experience in programming your Dragon in BASIC. This means
that we start at the correct place, which is the beginning. I don’t want
in this book to have to interrupt important explanations with
technical or mathematical details, and these will be found in the
Appendices. This way, you can read the full explanation of some
points if you feel inclined, or skip them if you are not.

Tostart with, we have to think about memory. A unit of memory
for a computer is, as far as we are concerned, just an electrical circuit
that acts like a switch. You walk into a room, switch a light on, and
you never think it's remarkable in any way that the light stays on
until you switch it off. You don’t go about telling your friends that
the light circuit contains a memory - and yet each memory unit of a
computer is just a kind of miniature switch that can be turned on or
off. What makes it a memory is that it will stay the way it has been
turned, on or off, untilit ischanged. One unit of computer memory
like this is called a bir — the name is short for binary digit, meaninga
unit that can be switched to one of two possible ways.

We'll stick with the idea of a switch, because it's very useful.
Suppose that we wanted to signal with electrical circuits and
switches. We could use a circuit like the one in Fig. 1.1. When the
switch is on, the light is on, and we might take this as meaning YES.
When the switch is turned off, the light goes out, and we might take

2 Introducing Dragon Machine Code

e
R e T ke i~
current
switch light return
(transmitter) (receiver) (earth)

Fig.1.1. Asingle-line switch and buib signalling system

N

off | off
off | on
on | off
on | on

Fig. 1.2. Twe-line signalling - four possible signals can be sent

this as meaning NO. You could attach any two meanings that you
liked to these two conditions (called ‘states’) of the light, so long as
there are only two. Things improve if you can use two switches and
two lights, as in Fig. 1.2. Now four different combinations are
possible: (a) both off, (b) A off, B on, (c) A on, B off, (d) both on.
This set of four possibilities means that we could signa! four
different meanings. Using one line allows two possible codes; using
two lines allows four codes. If you feel inclined to work them all out,
you'll find that using three lines will allow eight different codes. A
moment’s thought suggests that since 4 is 2X2, and eight is 2X2X2,
then four lines might allow 2X2X2X2, which is 16, codes. It’s true,
and since we usually write 2X2X2X2 as 2+ (two to the power 4), we
can find out how many codes could be transmitted by any number of
lines. We would expecteightlines, forexample, to beable tocarry 2¢
codes, which is 256. A set of eight switches, then, could be arranged

ROM. RAM., Bytes and Bits 3

50 as toconvey 256 different meanings. [t's up to us todecide how we
might want to use these signals.

One particularly useful way is called binar) code. Binary code isa
way of writing numbers using only two digits. § and 1. We can think
of @ as meaning ‘switch off" and I as meaning‘switch on’, sothat 256
different numbers could be signalled by using eight switches by
thinking of ¢ as meaning off and | as meaning on. This group of
eight is called a byre. and it's the quantity that we use to specify the
memory size of our computers. This is why the numbers 8 and 256
occur so much in machine code computing.

The way that the individual bits in a byte are arranged so as to
indicate a number follows the same way as we use to indicate a
number normally. When you write a number such as 256, the 6
means six units, the 5 is written to the immediate left of the 6 and
means five tens, and the 2 is written one more place to the left and
means two hundreds. These positions indicate the importance or
significance of a digit. as Fig. 1.3 shows. The 6 in 256 is called the
‘least significant digit’, and the 2 is the ‘most significant digit'.
Change the 6 to 7 or 5, and the change is just one partin 256. Change
the 2 to I or 3 and the change is one hundred parts in 256 - much
more important.

2 5 3 adenary (decimat) number

/

most significant
digit

| 0 I a binary number

Fig. 1.3. The significance of digits. Our numbering system uses the position of
a digit in a number to indicate its significance or importance

Having looked at bits and bytes. it’s time to go back to the idea of
memory as a set of switches. As it happens. we need two types of
memory in a computer. One type must be permanent, like
mechanical switches or fixed connections, because it has to be used
for retaining the number-coded instructions that operate the
computer. This is the type of memory that is called ROM, meaning
Read-Only Memory. This implies that you can find out and copy
what is in the memory, but not delete it orchange it. The ROM is the
most important part of your computer, because it contains all the

4 Introducing Dragon Machine Code

instructions that make the computer carry out the actions of
BASIC. When you write a program for yourself, the computer
stores it in the form of another set of number-coded instructionsina
part of memory that can be used over and over again. This is a
different type of memory that can be ‘written’as well as ‘read’, and if
we were logicalaboutit we wouldreferto itas R WM, meaningread-
write memory. Unfortunately, we're not very logical, and we call it
RAM (meaning Random-Access Memory). This was a name that
was used in the very early days of computing to distinguish this type
of memory from one which operated in a different way. We're stuck
with the name of RAM now and probably forever!

The number-code caper

Now we can get back to the bytes. We saw earlier that a byte, which
is a group of eight bits, can consist of any one of 256 different
arrangements of these bits. The most useful arrangement, however,
is one that we call binary code. These different arrangements of
binary code represent numbers which we write in ordinary formas ¢
10 255 (not I to 256, because we need a code for zero). Each byte of
the 32768 bytes of RAM in the Dragon 32 canstoreanumberwhich
is in this range of § to 255.

Numbers by themselves are not of muchuse, and we wouldn’tfind
a computer particularly useful if it could deal only with numbers
between) and 255, so we make use of these numbers as codes. Each
number code can, in fact, be used to mean severaldifferentthings. If
youhave worked with ASCII codes in BASIC, you will know that
each letter of the alphabet - and each of the digits § to 9 and each
punctuation mark - is coded in ASCII as a number between 32 (the
space) and 127 (the left-arrow). That selection leaves you with a
large number of ASCII code numbers which can be used for other
purposes such as graphics characters. The ASCII code is not the
only one, however. Dragon uses its own coded meanings for
numbers in this range of § to 255. For example, when you type the
word PRINT in a program line, what is placed inthe memory of the
Dragon (when you press ENTER) is not the sequence of ASCII
codes for PRINT. This would be 80.,82.73,78,84, one byte for each
letter. What is put into memory, in fact, is one byte, the binary form
of the number 135. This single byte is called a roken and it can be
used by the computer in two ways. One way is to locate the ASCII
codes for the characters that make up the word PRINT. These are

ROM, RAM, Bytes and Bjts 5

stored in the ROM, so that when you LIST a program, you will see
the word PRINT appear, not a character whose code is 135. The
other, even more important, use of the token is to locate a set of
instructions which are also held in the ROM in the form of number
codes. These instructions will cause characters to be printed on the
screen, and the numbers that make up these codes are what we call
machine code. They control directly what the ‘machine’ does. That
direct control is our reason for wanting to use machine code. When
we use BASIC, the only commands we can use are the ones for which
‘tokens’ are provided. By using machine code, we can make up our
own commands and do what we please. Incidentally, the fact that
PRINT generates one ‘token’ is the reason why it is possible to use ?
in place of PRINT. The Dragon has been designed so that a? which
is not placed between quotes will also cause 135 to be put into
memory.

Do-it-yourself spot

As an aid to digestingall that information, try a shortprogram. This
one, in Fig. 1.4, isdesigned to reveal the keywords that are stored in

1@ PRINT328195" "5 :FOR N=32819 TO 33089
2@ K=PEEK<{N)

3@ IF K<128 THEN PRINTCHRS (K)3

4@ IF K>=128 THEN PRINTCHR$ (K—-128):PRINT
N3 » g

50 NEXT

Fig 14. A program that reveals the keywords of Dragon BASIC

the ROM, and it makes use of the BASIC instructionword PEEK.
PEEK has to be followed by a number or number variable within
brackets, and it means ‘find what byte is stored at this address
number’. All of the bytes of memory within your Dragon are
numbered from zero upwards, one number for each byte. Because
this is so much like the numbering of houses in a road, we refer to
these numbers as addresses. The action of PEEK is to find what
number, which must be between () and 255, is stored at each address.
The Dragon automatically converts these numbers from the binary
form in which they are stored into the ordinary decimal (more
correctly, denary) numbers that we normally use. Byusing CHR$ in
our program, we can print the character whose ASCII code is the
number we have PEEKed at. The program uses the variable N asan

6 Introducing Dragon Machine Code

address number, and then checks that PEEK(N) gives a number less
than 128 - in other words a number which is an ASCII code. If it is,
then the character is printed.

Now the reason that we have to check is that the last character in
each set of words, or word, is coded in a different way. The number
that we find for the last character has had 128 added to the ASCII
code. Forexample,thefirst three address locations that the program
PEEKs at contain the numbers 79, 79 and 219. The number 70 is the
ASCII code for F, 79 is the code for O, and then2 |)—128=82, which
is the ASCII code for R. This is where the word FOR isstored, then.
The reason for treating the last letter so differently is to save
memory! If a gap were left between words, this would be a byte of
memory wasted. As it is, there is no waste, because the last letter of a
group always has a code number that is greater than 128, so the
computer can recognise it easily. We have followed the same scheme
in the BASIC program of Fig. 1.4 by using line 40 to print the
correct letter and to take a new line and print the address number.
There is another set of numbers stored further on, which consists of
more addresses. These are the addresses of subroutines which carry
out the actions of BASIC, and they are stored in the same order as
these words.

Dragon dissection

Now take a look at a diagram of the Dragonin Fig. 1.5. It's quitea
simple diagram because I've omitted all of the detail, butit’senough

ROM
Im ______ |“| Serial
= = Keyboard
mpy |} Buses i| Port v
= = Cassette
= = Printer

Fig 1.5. Ablock diagram of Dragon. The connections marked Busesconsist of
a large number of connecting links which join ail of the units of the system.

ROM, RAM, Bytes and Bits 7

to give us a clue about what’s going on inside. This is the type of
diagram that we call a block diagram, because each unit is drawn as
a block with no details about what may be inside. Block diagrams
are like large-scale maps which show us the main routes between
towns butdon’t show side-roads or town streets. A block diagram is
enough to show us the main paths for electrical signals in the
computer.

The names of two of the blocks should be familiar already. ROM
and RAM buttheothertwoarenot. Theblock thatis marked MPU
isa particularly important one. MPU means Microprocessor U nit
some block diagrams use the letters CPU (Central Processing Unit).
The MPU is the main ‘doing’ unit in the system.and it is. in fact, one
single unit. The MPU is a single plug-in chunk. one of those silicon
chips that you read about. encased in a slab of black plastic and
provided with 40 connectingpins that arearranged in two rows 0f20
(Fig. 1.6). There are several different types of MPU made by
different manufacturers. and the one in your Dragon is called 6809
(or 6809E). It’s quite different from the MPU chips that are used in
most othercomputers.so that books about other MPU chipssuchas

plastic block
enclosing circuit

20 pins this side

marking for
pin number 1

Fig. 1.6. The 6809 MPU. The actual working partis smaller than a fingernail,
and the larger plasticcase {52 mm long and 14 mm wide) makes it easierto
work with

8 Introducing Dragon Machine Code

the Z80 or the 6502 won't be of much help in understanding the 6809.

What does the MPU do? Theanswer is practically everything,and
yet the actions that the MPU cancarry out are remarkably few and
simple. The MPU can load a byte, meaning that a byte which is
stored in the memory can be copied into another store in the MPU.
The MPU canalso store a byte, meaning that acopy of abytethatis
stored in the MPU can be placed in any address in the memory.
These two actions (see Fig. 1.7) are the ones that the MPU spends

LOAD

ROM or RAM

MPU STORE

ROM or RAM

Fig 1.7. Loading and storing. ‘Loading’ means signalling tothe MPUfromthe
memory, so that the digits of a byte are copied into the MPU. ‘Storing’ is the
opposite process.

most of its working life in carrying out. By combining them, we can
copy a byte from any address in memory to any other. You don't
think that’s very useful? That copying action is just what goes on
when you press theletter H on thekeyboardand see the Happearon
the screen. The MPU treats the keyboard as one piece of memory
and the screen as another, and copies bytes from one to the other as
you type. That's a considerable simplification, but it willdo for now
just to show how important the action is.

Loading and storing are two very important actions of the MPU,
but thereare several others. One set of actions is the arithmetic set.
For most types of MPU, these consist of addition and subtraction
only. The 6809 is unique in its class in having a multiplication

ROM. RAM, Bytes and Bits 9

instruction, but most of the arithmetic operations are simpler than
this. and can use only single-byte numbers. Since a single-byte
number means a number between and 255. how does the computer
manage to carry out actions like multiplication of large numbers,
division, raising to powers, logarithms, sines, and all the rest? The
answer is - by machine code programs that are stored in the ROM. I
these programs were not there you would have to write your own.
There aren’t many computer users who would like to set about that
task.

There’s also the logic set. MPU logic is, like all MPU actions,
simple and sub ject to rigorous rules. Logic actions compare the bits
of two bytes and produce an ‘answer’ which depends on the bits’
values that are compared and on thelogicrule that is being followed.
The three logic rules are called AND, OR and XOR, and Fig. | .8
shows how they are applied.

Another set of actions is called the ‘jump set’. A jump means a
change of address, rather like the action of GOTO in BASIC. A
combination of atestand a jump is the way that the MPU carries out
its decision steps. Just as you can program in BASIC:

IF A =36 THEN GOTO 1050

so the MPU can be made to carry out an instruction whichis at an
entirely different address from the normal nextaddress. The MPU is
a programmed device, meaning that it carries out each of its actions
as a result of being fed with an instruction byte which has been
stored in the memory. Normally when the MPU is fed with an
instruction from an addresssomewhere (usually in ROM), it carries
out the instruction and then reads the instruction byte that is stored
in the next address up. A jump instruction would prevent this from
happening. It would, instead, cause the M PU to read from another
address, the one that was specified in the jump instruction. This
jump action can be made to depend on the result of a test. The test
will usually be carried out on the result of the previous action,
whether it gave a zero, positive or negative result, for example.

That isn’t a very long or exciting list. but the actions that I've
omitted are either unimportant at this stage, or not particularly
different from the ones in the list. What [want to emphasise is that
the magical microprocessor isn't such a very smart device. What
makes it so vital to the computer is that it can be programmed and
thatitcancarryoutitsactionsveryquickly. Equallyimportantisthe
fact that the microprocessor can be programmed by sending it
electrical signals.

10 /ntroducing Dragon Machine Code

AND

The result of ANDing two bits will be 1 if both
bits are 1, @ otherwise:

LAND 1 =1 11AN)¢=0%@ANI(D:@
(gan1 =9

For two bytes, corresponding bits are ANDed

191108111
AND PpBpL11L
[LLLLIVVY

only
these bits
exist in beth

bytes.

OR

The result of ORing two bits will be 1 if either
or both bits is 1, @ otherwise

1OR1L=1 %10Rw=1%ﬂom&:ﬂ
foR1 =1

For two bytes, corresponding bits are ORed

19110111
OR BPBP1L1L
1PIIIT1L

only
bit which
is @ in

both.

XOR (Exclusive-OR)
Like OR, but result is zero if the bits are ideatical
L XOR1 =9 %1XOR¢=l% @ XOR @ = ¢
XOR 1 =1
18116111
XOR pA@B111L
19111009
1f two bits
are identical
the result
is zero.

Fig. 1.8. The rules for the three logic actions, AND, OR and XOR

ROM, RAM, Bytes and Bits 11

These signals are sent to eight pins. called the data pins, of the
MPU. Itdoesn'ttake much of a guess to realise that theseeight pins
correspond to the eight bits of a byte. Each byte of the memorycan
therefore affect the MPU by sharing its electrical signals with the
MPU. Since this is a long-winded description of the process, we call
it ‘reading’. ‘Reading’ means that a byte of memory is connected
along eight lines to the MPU, so that each I bit will cause a | signal
on adata pin, and each @ bit will cause a § signal on a data pin. Just
as reading a paper or listening to a recording does not destroy what
is written or recorded, reading a memory does not change the
memory in any way, and nothing is taken out. The opposite process
of writing does, however, change the memory. Like recording a tape,
writing wipes out whatever existed there before. When the MPU
writes a byte to an address in the memory, whatever was formerly
stored at that address is no longer there - it has been replaced by the
new byte. This is why it is so easy to write new BASIC lines replacing
old ones at the same line number.

Table d"Hote?

Do you really write programs in BASIC? It might sound like a silly
question, but it’s a serious one. The actual work of a program is done
by coded instructions to the MPU, and if you write only in BASIC,
youdon’t write these. All that you do is to select from a menu of
choices that we call the BASIC keywords, and arrange them in the
order that you hope will produce the correct results. Your choice is
limited to the keywords that are designed into the ROM. We can’t
alter the ROM. Therefore, if we want to carry out anaction that is
not provided for by a keyword, we must eithercombineanumberof
keywords(a BASIC program)or operatedirectly on the MPU with
numbercodes (machine code). When you have to carry out actions
by combining a number of BASIC commands, the result is clumsy,
especially if each command is a collection of other commands.
Direct action is quick, but it can be difficult. The direct action that I
am talking about is machine code, and a lot of this book will be
devoted to understanding this ‘language’ which is difficult just
because it’s simple!

Take a situation which willillustrate this paradox. Suppose you
want a wall built. You could ask a builder. Just tell him that you
want a wall built across the back garden, and then sit back and wait.
This is like using BASIC with a command word for ‘build a wall’.

12 Introducing Dragon Machine Code

There’s a lot of work to be done, but you don’t have to bother about
the details.

Now think of another possibility. Suppose you had arobot which
could carry out instructions mindlessly but incredibly quickly. You
couldn’t tell it to ‘build a wall’ because these instructions are beyond
itsunderstanding. You have to tell it in detail, such as: ‘stretch a line
from a point 85 feet from the kitchen edge of the house, measured
along the fence southwards, to a point 87 feet from the lounge end of
the house measured along that fence southwards. Dig a trench
eighteen inches deep and one foot wide along the path of your line.
Mix three bags of sand and two of cement with four barrow-loads of
pebbles for three minutes. Mix water into this until a pail filled with
the mixture will take ten seconds to empty when held upside down.
Fill the trench with the mixture ...". The instructions are very
detailed - they have to be for a brainless robot - but they will be
carried out flawlessly and quickly. If you've forgotten anything, no
matter how obvious, it won't be done. Forget to specify how much
mortar, what mixture and where to place it, and your bricks will be
put up without mortar. Forget to specify the height of the wall, and
the robot will keep piling one layer on top of another, like the
Sorcerer’s Apprentice, until someone sneezes and the whole wall
falls down.

The parallel with programming is remarkably close. One keyword
in BASIC is like the ‘build a wall’ instruction to the builder. It will
cause a lot of work to be done, drawing on a lot of instructions that
are not yours — but it may not be done as fast as you like. If you can
be bothered with specifying the detail, machine code is a lot faster
because you are giving yourinstructionsdirect to anincredibly fast
but mindless machine, the microprocessor. We can stretch the
similarity further. If you said to your builder ‘mend the car’, he
might be unwilling or unable to do so. The correct set of detailed
instructionsto therobotwould, however, get this jobdone. Machine
code can be used to make yourcomputer carry outactions that are
simply not provided for in BASIC, though it’s fair to say that many
modern computers allow a much greater range of commands than
early models, and this aspect of machine code is not quite so
important as it used to be.

One last look at the block diagram is needed before we start on the
inner workings of the Dragon. The block which is marked ‘Port’
includes more than one chip. A port in computing language means
something that is used to pass information, one byte at a time, into
or out from the rest of the system — the MPU, ROM and RAM. The

ROM, RAM. Bytes and Bits 13

reason for having a separate section to handle this isthat inputsand
outputs are important but slow actions. By usinga port we can let
the microprocessor choose when it wants to read an input or write an
output. In addition, we can isolate inputs and outputs from the
normal action of the MPU. This is why nothing appears on the
screen in a BASIC program except where we have a PRINT
command in the program. It’s also why pressing the PLAY key of
the cassette recorder has noeffect untilyou type CLOAD and press
ENTER. The port keeps the action of the computer hidden from you
until you actually need to have an input or an output.

We have now looked at all of the important sections of your
Dragon. I've used some terms loosely - purists will object to the way
I've used the word ‘port’, for example - but no-one can quarrel with
the actions that arecarried out. What we havetodonowistolook at
how the computer is organised to make use of the MPU, ROM,
RAM and portssothatit can be programmed in BASIC and canrun
a BASIC program. It looks like a good place to start another
chapter!

Chapter Two
Digging Inside Dragon

1 don’t mean ‘digging inside’ literally - youdon'thave to open up the
case. What I do mean is that we are going to look at how the Dragon
is designed to load and run BASIC programs. We’ll start with a
simplified version of the action of the whole system, omitting details
for the moment

The ROM of your Dragon, which starts at address 32768, consists
of a large number of short programs - subroutines - which are
written in machine code, along with sets of values (tables) like the
table of keywords. There will be at least one machine code
subroutine for each keyword in BASIC, and some of the keywords
may require the use of many subroutines. When you switch on your
Dragon, the piece of machine code that is carried out is called the
initialisation routine. This is a long piece of program but, because
machine code is fast, carrying out instructions at the rate of many
thousands per second, you see very little evidence of all this activity.
All that you notice is a delay between switching on and seeing the
MICROSOFT copyright notice. In this brief time, though, the
action of the RAM part of the memory has been checked, some of
the RAM has been “written’ with bytes that will be used later, and
most of the RAM has beencleared for use. ‘Cleared for use’does not
mean that nothing is stored in the RAM. When you switch off the
computer, the RAM loses all trace of stored signals, but when you
switch on again the memory cells don’t remain storing zeroes. In
each byte, some of the bits will switch to I and some will switch to §
when power is applied. This happensquite atrandom, so that if you
could examine what was stored in each byte just after switching on,
youwould find a set of meaningless numbers. These would consist of
numbers in the range @ to 255, the normal range of numbers for a
byte of memory. These numbersare ‘garbage’ - they weren’t putinto
memory deliberately, nor do they form useful instructions or data.
The first job of the computer, then, is to clean up. In place of the

Digging Inside Dragon 15

random numbers, the computer substitutes a very much more
ordered pattern of 4 bytes 0f255 followed by four bytes of §. Try this
switch on, and type (no line number):

FOR N =13824 TO 13847:?PEEK(N);* ";;NEXT

and then press ENTER. The range of memory addresses we have
used is the ‘start of BASIC’ range, where the first bytes of a BASIC
program are normally stored. If we have just switched on, and
haven’t used a line number for the command, there will be nothing
stored here except for the patternthat was left after the initialisation.
As you'll see on the screen, it consists of the chain of 255's and §'s.

The initialising program has a lot more to do. The first section of
RAM, from address § to 1923, isfor'system use’. This is because the
machine code subroutines which carry out the actions of BASIC
need to store quantities in memory as they are working. Address
numbers 25 and 26, for example, hold the address of the first byte of
a BASIC program. A much larger section of the memory is used for
storing numbers that make text and graphics appear on the screen.
In addition, some RAM has also to be used to hold quantities that
are created when a program runs. That’s what we are going to look
at now.

Variables on the table

BASIC programs make a lot of use of variables, meaning the use of
letters to represent numbers and words. Each time you ‘declare a
variable’ by using a line like:

N=20 or A$=“SMITH"

the computer has to take up memory space with the name (N or A$
or whatever you have used) and the value (like 20 or SMITH) that
you have assigned to it. The piece of memory that is used to keep
track of variables is called the variable list table (VLT). It doesn’t
occupy any fixed place in the memory, but is stored in the free space
just above your program. If youadd one more line to your program,
the VLT address has to be moved to aset of higheraddress numbers.
If you delete a line from your program, the VLT will be moved down
in the same way so that it isalways kept justfollowingthe last line of
BASIC.

Now because the variable list table address can and does move
around as the program is altered, the computer must at all times

16 Introducing Dragon Machine Code

keep a note of where the table starts. This isdone by using one of the
pieces of memory that are reserved for system use, the addresses 27
and 28. You may wonder why two addresses are used. The reason is
that one byte can hold a number only up to 255 in value. If we use
two bytes, however, we can hold the number of 256’s in one byte and
the remainder in the other. A number like 257, for example, is one
256 and one remaining. We could code this as [, 1. This means thata
I is stored in the byte that is reserved for 256’s, and | in the byte
reserved for units. The order of storing the numbers is high-byte
then low-byte. To find the number that is stored, we multiply one
byte by 256 and add the other. For example, if you found 3,56 stored
in two consecutive addresses that were used in this way, this would
mean the number:

3*%256 + 56 = 824

The biggest number that we can store using two bytes like this is
255,255, which means 255%256+255=65535. This is the reason that
you can’t use very large numbers like 70909 as line numbers in the
Dragon - the operating system uses only two bytes to store its line
numbers. In fact, for other reasons, the maximum number that you
can use is 63999,

All of this means that we can find the address that is stored in
addresses 27 and 28 by using the formula:

YPEEK (27)¥256+PEEK(28)

If you use this just after you have switched on your Dragon, then the
result on the 32K Dragon is the address number 7683. This is just
above the address at which the first byte of a BASIC program would
be stored. To see this in action, type the line:

19 N=29

and try ?PEEK(27)*256 +PEEK(28) again. If you typed this lineas
did, with a space between the line number and the ‘N°, then the
address that you get is 7692. The variable list table has moved
upwards in the memory, by 9 bytes. That’s more than the number of
bytes that you typed, you'll notice - reasons later.

Quite a lot of important addresses that the computer uses are
‘dynamically allocated’ like this. ‘Dynamicallyallocated’ means that
the computer will change the place where groups of bytes are to be
kept. It will then keep track of where they have been stored by
alteringanaddressthatisheldina pair of bytessuchas thisexample.
This has important implications for how you use your computer.

Digging Inside Dragon 17

For example, if you shift the VLT by poking new numbers into
addresses 27 and 28. the computer can’t find its variable values. Try
this - after finding the VLT address, but without running the one-
line program, 19 N=20 , type ?N . The answer will be zero. Why?
Because the program has not been run. The address 7692 is where
the VLT will start, but there’s no VLT created until the program
runs. This makes it easy for you to add or delete lines at this stage.
All that will have to be altered is the pair of numbers in addresses 27
and 28. The VLT values are put in place only when the program
runs, and the table is never actually moved. All that changes when
you edit is the starting address in 27 and 28. That’s why you can’t
resumea program after editing - you have to RUN againtocreatea
new VLT at a new address. If you RUN the one-line program now,
and then type 7N you will get the expected answer 0of20. Now type
(no line number) POKE 27,50, and press ENTER. Try ?N and see
what you get. On my Dragon. it was) again. because the correct
value of variable N can be found no longer. If your Dragon locks up
during this exercise, then the SYSTEM RESET button will restore
control, but the program may be lost. Note, incidentally, the use of
POKE to place a new value into a memory address. The correctform
of the command is POKE A.D . A is an address, and will be inthe
range § to 32767 (the range of values of RAM memory)forthe 32K
Dragon. Disthedatathat you place into this memory address, and
it must be a value between @ and 255. If you try to poke a number
greater than 255, you will get an ‘FC ERROR’ message instead.

A look at the table

It’s time now to do something more constructive, and take a look at
what is stored in the VLT. When we do these investigations, it's
important to ensure that the computer is clear of the results of
previous work, so it's advisable to switch off and then on again,
before each effort. Simply pressing the SYSTEM RESET button
does not alter values that you may have poked into the memory. It’s
tedious, I know, but that’s machine code for you!

To work, then. After switching off and on again, type the line:

19 N=2¢
again, and find the VLT address by using:
?PEEK(27)*256+PEEK(28)

18 Introducing Dragon Machine Code

7692 78
7693

7694 13X
7695 32
7696 [
7697 [
7698 4
7699 88
7700 4
7701 141
7702 112

Fig. 2.1. The variable list table entry for a simple number variable

This gave me the address 7692 again. Now type RUN, sothatvalues
are put into the VLT, and take a look at what has beenstored there.
This is done by using the command

FORX=7692 TO 7702:?X:* ™PEEK(X):NEXT

and pressing ENTER. This gives the listing thatis illustrated in Fig.
2.1. Now can we recognise anything here? We ought to recognise the
first byte of 78, because that’s the ASCII code for N! The next byteis
zero because our variable is called N, not NI or NG or any other
two-letter name. If we used a two-letter name, then both addresses
7692 and 7693 would have been occupied. The next five bytes, then,
must be the way that the number 20 has been coded. At this point,
don’t worry about how these numbers are used torepresent 20 - just
accept that they do! How do I know that it's the next five bytes that
represent the number 20? Easy, the byte in address 7699 is 88, which
is the ASCII code for X, and that’s the variable we used to print the
table values! The Dragon always uses justfive bytes for any value of
number variable, no matter whether it’s a small number like 2(), ora
very much larger one like 1427968315, or a fraction, or negative.
This makes the storage of number variables simple, and it also
makes it easy for the computer to find variables. If, for example, itis
looking for the value of a variable called Y, then when it finds ‘N’
(coded as ASCII 78) it need not waste time with the next six bytes
(one for a second letter, five for the value), but moves to the next
place where a variable name will be stored. If you are curious, and
have a head for mathematics, Appendix A shows what method of
coding is used to convertnumbersinto five bytes. For the purposes
of this book you don’t, however, need to understand how the coding
is done as long as you know how the code is stored and how many
bytes are needed.

Digging Inside Dragon 19
Tying up the string
Now we need totakealookat howastringvariable is stored. Switch
off and on again, and then type the line:
10 AB$=“THIS IS A STRING”

RUN this one-liner, and then find the VLT address by using
addresses 27 and 28 as before. 1 obtained 7719 for this. Now use:

FOR X=771¢ TO 772¢:?X;* ™,PEEK(X):NEXT
tofindwhatisinthe VLT. This time,it’sas Fig. 2.2 shows. Thefirst

771@ 65
7711 194
7712 16
7713 [J
7714 3o
771S 1e
7716 e
7717 88
7718 [
7719 141
7720 113

Fig. 2.2. The VLT entry for a string variable.

value in this table is 65. which is the ASCII code for A. The second,
however, is 194. Now this is the ASCII code for B with 128 added to
it, and it'’s the way that the Dragon recognises that this is a string
variable. If you had used the variable name AS rather than ABS,
thenthe second number (at address 7711) would havebeen 128, not
@. When you use a number variable, the second ASCII code of the
name will be @, or one of the ASCII code numbers, never greater
than 127. Good thinking, designers!

Now take a look at the rest of the entry for this string. It doesn’t
look much like the ASCII codes for the letters, does it? Infact, the
entry consists of seven bytes only, just the same total length as a
number variable. The clue to what is being done emerges when we
take a look at the numbers. The number that follows the code for B
(194, because 128 has been added to the ASCII code)is 16. Now 16 is
the number of characters in the string. If you count the number of
letters and spaces you'll see that this is what it comes to. The next
byte is zero, and then there are two bytes, 3p and 1§. Now two bytes
together are always likely to be an address, and if we combine them
in the usual way, using 30*256+ 10, we get 7699. Next step in the

20 Introducing Dragon Machine Code

trail is PEEK(7690). Sure enough, it’s 84, the ASCII code for ‘T".
7699 is the address of the first byte of the string.

Let’s gather all this up. The Dragon stores an entry of seven bytes
inits VLT for each string. Of these seven bytes, the first two are for
the string name, and the second will be 128 or more. When a two
character name is used, 128 is added to the ASCII code for the
second letter. This allows the computer to distinguish a string
variable from a number variable. The next five bytes then contain
the length of the string and the address in memory of itsfirst byte. As
ithappens,onlythree bytesare neededto keep track of astring. One
byte is needed for the length - no string will exceed 255 characters(in
fact you are not allowed to enter more than 241). Two bytes are
needed for the address, so thattwo of theseven bytesthatareusedin
the string VLT entry are not used except as separators. The
convenience of having the same total length of VLT entry for astring
as for a number outweighs the slight waste of two bytes in eachstring
entry.

In this example, the string is stored at an address lower than the
VLT, in the ‘BASIC text’ part of the memory. This is the part of the
memory which contains the program, and since the ASCII codes for
the string are placed here when you type the program, it’s as good a
resting place as any. Numbers must be transferred to the VLT

7712 65
7713 128
7714 2
7715 [
7716 3o
7717 k4
7718 [
7719 66
7720 128
7721 2
7722 [
7723 3o
7724 17
7725 [
7726 &7
7727 128
7728 4
7729 [
773@ 127
7731 184
7732 [
7733 88

Fig. 2.3. The VLT entry for a string which is not stored in the program part of
memory.

Digging Inside Dragon 21

because they are not stored in ASCII codes. The question now is,
what happens when a string is created which does not exist in the
program? If you type, for example:

10 A$=“AB™B$="CD™:C$=AS$+BS

and RUN this. you will find that your VLT is longer. as you might
expect. You will have to look at memory addresses from 7712 to
7733 this time. You will find the entries for AS and BS. just as you
would expect, givingaddresses inside the programmemory region,
as shown in Fig. 2.3. The variable CS$. however. gives the bytes
127251 forits address. Thiscorresponds to an addressof 32763 (it’s
127*256 + 251. remember) for this string. We can take a look at
these addresses. If you type:

FORX=32763T032766:°X"* ™PEEK(X):"* ".CHRS$(PEEK
(X)NEXT

thenall will be revealed. The ASCIIcodes for letters ABCD are now
stored here, and the use of CHRS in the program reveals them.

Pointing the way

As it happens. your Dragon has a BASIC command which allows
addresses to be obtained fromthe VLT. The command is VARPTR .
and it hasto be followed by the name of the variable within brackets.
If you now type: ?VARPTR(AS$) and press ENTER. you will find
7714 on the screen. This is NOT the address of the variable, it’s the
address of its VLT entry. VARPTR gives the address of where the
length of thestring is stored, ignoring the name bytes. To find the
length byte,youneed to use?’PEEK(VARPTR(AS$)). Ifyouwantthe
address, you have to go to the second and third bytes following the
length byte. For example, you can use:

?PEEK(VARPTR(A%)+2)*256+PEEK(VARPTR(AS)+3)
which will give 7689 as the string address as before. This aliows some
smart dodges inside BASIC programs, like swapping the names of
string variables!

Program time

It’s time now to look at how a program is stored in the memory of

22 Introducing Dragon Machine Code

1@ A=10@
2@ PRINT A
@ C$="DRAGON"

Fig. 2.4. A simple BASIC program

your Dragon. As before, we shall rely on PEEKs at parts of the
memory to find out what is happening. The first thing we need to
know, however, is where the bytes that form the address of the start
of a program are stored. As it happens, they are stored at 25 and 26.

We can therefore start looking at a program as it exists in the
memory. Type the program as shown in Fig. 2.4, but don’t run it.

7681 3o
7682 10
7683 o
7684 10
7685 65
7686 203
7687 49
7688 48
7689 [
769 Ie
7691 18
7692 o
7693 20
7694 135
7695 32
7696 65
7697 [
7698 Ie
7699 34
7700 [
7701 Ie
7702 67
7703 36
7704 203
7705 34
7706 68
7707 82
7708 65
7709 71
7710 79
7711 78
7712 34
7713 [
7714 [
7715 o
7716 78

Fig. 2.5 The bytes that represent the program in memory.

Digging Inside Dragon 23

Now type:
?PEEK(25)%256+PEEK(26)

and you will find the addressat which the first byte of this program
starts. In this example. my Dragon gave the address 7681. Now
when you use the usual loop to print values of the PEEK numbers
from this address onwards, you get the list as shown in Fig. 2.5. At
first sight it looks like a stream of meaningless numbers but, when
you look more carefully, you can see some patterninit. As usual, the
ASCII codes act as useful signposts. At 7685, for example, you can
see the number 65. which is the ASCII code for‘A’. Since we know
that the line is ‘A=I{)", we can look for the rest of this line. The 19 is
recognisable as 49 (ASCI1*1") and 48 (ASCI1*()"). so that the number
203 must represent the ‘="sign. Now this is nor the ASCII code for
‘=". but one of those ‘tokens’ that I mentioned in Chapter 1. It's a
token because the computer is required to carry out an action. not
just store an ASCII code here. The @ at address 7689 marks the end
of this line.

Now we have to grapple with the first four bytes. The first two are,
as you might suspect from looking at them, an address. The 3. 19
makes up the address 7699. What is this address? Why. it's the
address of the first byte of the next line! This is how the operating
system of the Dragon can pick out lines. and put them into the
correct sequence, no matter what order you use to enter them. The
final mystery is easily solved. l.ooking at the third and fourth bytes
of each of the lines shows the sequence 10. 20. 39 - the line numbers.
There are two bytes reserved for the line numbers because we want
to have line numbers higher than 255. For line numbers smaller than
256, the first of these bytes. the more significant byte, is not used.

Now take a look at the other lines. as they appear stored in the
memory. We have met the PRINT token of 135 before. and all the
rest should be familiar by now. The only novelty is the end of the
program. The last line ends with a @ as usual, but followingit.in the
place where the address bytes for the next line would be. is another
pair of zeros. This is the marker that the computer uses for END.

We can carry out some interesting changes on a program like this.
Suppose, for example, that we poke the addresses that are used to
carry the line numbers. If you type:

POKE7693,190:POKE7703.19

and press ENTER, you will have placed the number 1§ ineach line
number address for the lines 20 and 3. Now LIST and look at the

24 Introducing Dragon Machine Code

result! Its a program of line I§’s. Contrary to what you might
expect, this will RUN perfectly normally. The action of running, you
see, depends on the ‘next line’ addresses being correct, not on how
the lines are numbered. A program that has beenaltered in this way,
however, is certainly not normal. If you try to edit, for example,
there is only one line number to edit, and you'll get only the first line
when you try EDIT 1. That's because the computer starts looking
at line numbers from the start of the program and needs to look no
further than the first line. You can, however, record a program
which has been altered in this way, and replay it normally, and
RENUM will operate normally to restore the originalline numbers.

Running the program

Now that we have looked at the way in which a programis codedand
stored in the memory of the Dragon, we can give a bit of thought as
to how it runs. This action is carried out by the most complicated
part of the operating system, and it has to be givena starting address.
This address comes. as you might expect, from the locations 25 and
26 which we have used. Suppose we go through the actions, omitting
detail, of the three line program of Fig. 2.4. At the first address in
BASIC, the RUN subroutine will read the first two bytes, and store
them temporarily. These bytes will be used in place of the *start of
BASIC" address when the next line is carried out. The line number
bytes are thenread and stored. Why? So that if there is asyntax error
in the line, the computer will be able to print out the message: ‘SN
ERROR IN 19’ rather than ‘SN ERROR SOMEWHERE'! The
next byte is an ASCII code, and the computer will take this as being
a variable name. In the old days, the word LET had to be used to
‘declare a variable’, This required another token, and most modern
designs have dispensed with LET on the grounds that it’s just as
easy to arrange the subroutines to insert a LET token for a letter
thatimmediately follows a line number. This means that, if you puta
number in this place, it will be regarded as being part of the line
number. The special token for the ‘=" sign then causes a subroutine
to swing into action. This one creates an entry in the variable list
table, at the first available address, and puts the ASCII code for A in
that place. The next address in the VLT is left blank - there’s no
second letter for this variable name. The number 1§ is thenread and
converted to the special binary form, as noted in Appendix A. This
set of bytesisalso placed inthe VLT astheentry for A. The next byte

Digging Inside Dragon 25

of the program is then read. It's §, so that the address for the next
line. which was read as the first action, is now placed into the
microprocessor. The type of action that we have considered in detail
for line 19 then repeats with line 2¢. This time, more has to be done
when the action token is read. Since this is the token for PRINT, the
subroutine for PRINT must be called up. It will locate the address of
the next vacant place on thescreen. Thisisdone bykeepinga note of
the addressin a couple of bytes of RAM - read these bytes, and you
have the address. The value of A is then found in the VLT, and the
bytes converted back to ASCII code form. The codes are then
placed, one by one, in the screen memory. Doing this causes the
characters to become visible on the screen, because of another
subroutine. Onceagain, the zero at the end of the line causes the next
line number to be used. At the end of the third line, however, the
‘next line’ number is zero, and the program ends. The computer goes
back to its waiting state, ready for another command.

It's not quite so simple as that description makes it sound, but the
essentials are there. The important thing to realise is that there is a
lot of action to be done, and it has to be done one step at a time.
What makes BASIC slow is that each token calls up a subroutine,
which has to be found. For example, if you have a program that
consists of a loop like:

1) FOR N=1 TO 50
20 PRINT N
30 NEXT

then the action of reading the PRINT token of 135, and finding
where the correct subroutine is stored, will be carried out 5 times.
There is no simple way of ensuring that the subroutine is located
once and then just used 50 times. The kind of BASIC that you have
on your Dragon is ‘interpreted’ BASIC, which means that each
instruction is worked out as the computer comes to it. If that means
finding the address of the PRINT subroutine 50 times, so beit. The
alternative is a scheme called compiling, in which the whole program
is converted to efficient machine code before it is run. Compiling is
done using another program, called a compiler. At present, | don’t
know of any compiler for the Dragon, but there may be one
available by the time you read this!

Chapter Three
The Microprocessor

In this chapter, we'll start to get to grips with the 6809
microprocessor of the Dragon. The microprocessor, or MPU is, you
remember, the ‘doing’ part of the computer as distinct from the
storing part (memory) or the input/output part (ports). Conse-
quently, what the microprocessor does will control what the rest of
the computer does.

The MPU itself consists of a set of memory stores for numbers,
but with a lot of organisation added. By means of circuits that are
very aptly called gares, the way in which bytes are transferred
between different parts of the MPU’s own memory can be
controlled, and it is these actions that constitute the addition,
subtraction, logic and other actions of the MPU. Each of the actions
is programmed. Nothing will happen unless an instruction byte is
present in the form of a | or a @ signal at each of the eight data
terminals, and these bytes are used to control the gates inside the
MPU. What makes the whole system so useful is that because the
program instructions are in the form of electrical signals on eight
lines, these signals can be changed very rapidly. The speed is decided
by another electrical circuit called a c/lock-pulse generator, or clock
forshort. The speed that has been chosen as standard for the clock of
the Dragon is rather slow, but it can be changed! The change is
carried out by poking§ into address 65495. When you do this, you
can type faster without missing letters, your loops run faster, and
your animated characters move faster. There is one drawback - you
cannot use the cassette CLOAD and CSAVE commands reliably.
To revert to normal speed for these commands, POKE 65494, and
press ENTER. Normal speed is less than a million clock pulses per
second. It may not seem slow to you, but at a time when many
computers use clock speeds of four million pulses per second or
faster, the Dragon clock runs quite slowly!

The Microprocessor 27

Machine code

The program for the MPU, as we have seen, consists of number
codes, each being a number between § and 255 (a single byte
number). Some of these numbers may be instruction bytes which
cause the MPU to do something. Others may be data bytes, which
are numbers to add, or store or shift, or which may be ASCII codes
for letters. The MPU can't tell which is which - it simply does as it is
instructed. It’s up to the programmer to sort out the numbers and
put them into the correct order.

The correct order, as far as the MPU is concerned, is quite simple.
The first byte that is fed to the MPU after switching onorcompleting
an instruction, is taken as being an instruction byte. Now many of
the 6809 instructions consist of just one byte. and need no data.
Others may be followed by one or two bytes of data, and some
instructions need two bytes. When the MPU reads an instruction
byte, then it analyses the instruction to find if the instruction is one
that has to be followed by one or more other bytes. If, for example.
the instruction byte is one that has to be followed by two data bytes.
then when the MPU analyses the first byte, it will treat the next two
bytes that are fed to it as being the data bytes for that instruction.
This action of the MPU is completely automatic, and is built into the
MPU. The snag is that the machine code programmermust work to
the same rules and, to get the program right. 100% correct is just
about good enough. If you feed a microprocessor with an
instruction byte whenit expects adatabyteor withadatabytewhenit
expects an instruction byte, then you'll have trouble. Trouble nearly
always means an endless loop. which causes the screen to go blank
and the keys to have no effect. Even the SYSTEM RESET button
can sometimes fail to break the Dragon out of such a loop, and the
only remedy is to switch off. You will generally lose whatever
program you had in store. so that it’s vitally important to save any
machine code program or a BASIC program that causes machine
code actions (by using POKE) on tape before you use it.

What [want to stress at this point is that machine code
programming is tedious. It isn’t necessarily difficult - you are
drawingup a set of simple instructions for asimple machine - butit’s
often difficult for you to remember how much detail is needed.
When you program in BASIC, the machine’s error messages will
keep you right, and help to detect mistakes. When you use machine
code you’re on your own, and you have to sort out your own
mistakes. In this respect, a program called an assembler helps

28 /Introducing Dragon Machine Code

considerably. We'll look at that point again later. In the meantime,
since the best way to learn about machine code is to write it, use it,
and make your own mistakes. We'll start lookingat how thisis done,
and we’ll begin with the ways of writing the numbers that constitute
the bytes of a machine code program.

Binary, denary and hex

A machine code program consists of a set of number codes. Since
each number code is a way of representingthe I'sand §’sin a byte. it
will consist of numbers between § and 255 when we write it in our
normal scale of ten (denary scale). The program is useless until it is
fed into the memory of the Dragon, because the MPU is a fast
device, and the only way of feeding it with bytes as fast as it can use
them s by storing the bytes in the memory, and letting the M PU help
itself to them in order. You can't possibly type numbers fast enough
to satisfy the MPU. and even methods like tape or disk are just not
fast enough.

Getting bytes into the memory, then, is an essential part of making
a machine code program work, and we shall look at methods in
more detail later on. At one time, simple and very short programs
would be put into a memory by the most primitive possible method,
using eight switches. Each switch could be set to give a | or §
electrical output, and a button could be pressed to cause the memory
to store the number that the switches represented. and then select the
next memory address. Programming like this is just too tedious,
though, and working with binary numbers of I's and §'s soon makes
you cross-eyed. Now that we have computers, it makes sense to use
the computer itself to put numbers into memory, and an equally
obvious step is to use a more convenient number scale.

Just what is a convenient number scale is a matter that depends on
how you enter the numbers and how much machine code
programming you do. The Dragon contains subroutines which
convert the binary numbers in its memory to the form of denary
numbers to print on the screen, and will also carry out the reverse
action. When you use PEEK, the address that you want can be
written in denary, and the result of the PEEK will be a number in
denary, betweenf) and 255. When you use POKE, similarly, you can
type both the address number and the byte to be poked in denary.

Serious machine code programmers, however, find the use of
denary anything but convenient. A denary number for a byte may be

The Microprocessor 29

one figure (like 4) or two (like 17) or three (like 143). A much more
convenient code is the one called kex (short for hexadecimal) code
All one-byte numbers can be represented by just two hex digits. In
conjunction with this, serious machine code programmers write
their programs in what is called assembly language. This uses
command words which are shortened versions of the names of
commands to the MPU. Programs that are called assemblers then
convert these command words into the correct binary codes.
Practically all assemblers show these codes on the screen in hex form
rather thanindenary. In addition, when you type data numbers, you
will have to make use of hex code. Since the Dragon also contains
routines for working in hex, itseems sensible to learn how to use this
facility. Not only does it make it easier for you to progress in
machine code, it allows you to make effective use of some excellent
software for developing machine code, such as DASM and
DEMON (see Appendix B). ‘Hexadecimal’ means scale of sixteen,
and the reason that it is used so extensively is that it is naturally
suited to representing binary bytes. Four bits, half of a byte, will
represent numbers which lie in the range ¢ to IS in our ordinary
number scale. This is the range of one hex digit (Fig. 3.1.). Since we
don’t have symbols for digits higher than 9, we have to use the
letters, A,B,C,D,E, and F to supplement the digits § to 9 in the hex
scale. The advantage is that a byte can be represented bya two-digit
number, and a complete address by a four-digit number. The
number codes that are used as instructions have been designed in
hex code, so that we cansee much better how commands are related.
For example, we may find that a set of related commands all start

Hex Denary Hex Denary
[4 [4 c 12
1 1 D 13
2 2 E 14
3 3 F 15
4 4 then
5 5 19 16
6 6 11 17
7 7 to
8 8 20 32
9 9 21 33
A 19 22 34
B 11 etc.

Fig. 3.1. Hex and denary digits.

30 /ntroducing Dragon Machine Code

with the same digit when they are written in hex. In denary, this
relationship would not appear. In addition, it's much easier to write
down the binary number which the computer actually uses when you
see the hex version. The use of the Dragon assembler and monitor
programs. such as the excellent DASM and DEMON, demand
familiarity with hex. and books of information on the 6809 MPU
will all have been written assuming that you know hex. It sounds as
if we ought to make a start on it!

The hex scale

The hexadecimal scale consists of sixteen digits, starting as usual
with @ and going up in the usual way to 9. The next figure is not 10,
however, because this would mean one sixteen and no units, and
since we aren’t provided with symbols for digits beyond 9, we use the
letters A to F. The number that we write as 19 (ten) in denary is
written as QA in hex, eleven as @B, twelve as §C and so on up to
fifteen, which is §F. The zero doesn't have to be written, but
programmers get into the habitof writingadatabyte with two digits
and an address with fourevenif fewerdigitsareneeded. The number
that follows @ F is 10. sixteen in denary. and the scale then repeats to
I F. thirty-one, which is followed by 2¢. The maximum size of byte,
255 in denary. is FF in hex. When we write hex numbers, it’s usual to
mark them in some way so that you don't confuse them with denary
numbers. There’s not much chance of confusing a number like 3E
with a denary number, but a number like 26 might be hex ordenary.
The convention that is followed by 6809 programmers is to use the
dollar sign (8) to mark a hex number, with the sign placed before the
number. For example, the number $47 means hex 47. but plain 47
would mean dcnary forty-seven. When you write hex numbers fora
6809 program, it’s advisable to follow this convention. The Dragon,
however. uses a different method when you want to poke hex
numbers. The Dragon method is &H. so that POKE&H19.&HF
would poke the hex address of 19 with the hex number F.
Nowthe great value of hex code is how closely it corresponds to
binary code. If you look at the hex-binary table of Fig. 3.2, you can
see that $9 is 190 1 in binary and SF is 1111. The hex number $9F is
therefore just 10@ 11111 in binary - vou simply write down the
binary digits that correspond to the hex digits. The conversionin the
opposite direction is just as easy - group the binary digits in fours,
starting at the least significant (right-hand side of the number) and

The Microprocessor 31

Hex Binary Hex Binary
[/ [0} 8 1999
1 ppp1 9 1pp1
2 pp1p A 1919
3 pp11 B 1911
4 p1pp C 1199
5 p1p1 D 1191
6 pL1p E 1119
7 pl1l F 1111

Fig. 3.2. Hex and binary digits.

Conversion: Hex to Binary

Example: 2CH veeeeeesesess 2H is PPLP binary
CH is 11PP binary

So 2CH is PP1P11PP binary (data byte)

Example: 4A7FH «..eceeese. 4H is PIPP binary
AH is 1P1P binary
7H is Q111 binary
FH is 1111 binary

So 4A7FH is P1PP1P1PP1111111 binary (an address)

Conversion: Binary to Hex

Example: Pl1P1PI1 veveveeennne. PLl1P is 6H
1p11 is BH

So P11P1P11 is 6BH

Example: 1911P19P10P1P ... note that this is
not a complete number of bytes.

Group into fours, starting with 1sb:
gp1p is 2H
1001 is 9H
1191 is DH and
the remaining 10 is 2, making 2D92H
Fig. 3.3. Converting between hex and binary.

32 Introducing Dragon Machine Code

then convert each group into its corresponding hex digit. Fig. 3.3
shows examples of the conversion in each direction so that you can
see how easy it is.

The Dragon is one of the better designed computers in as muchas
it can convert between hex and denary by means of BASIC
commands. If you want to find what a denary number looks like in
hex, just use HEX$(number). For example, ’HEX$(46) will give on
the screen 2E, which is the hex for 46 denary. To find the denary
equivalent of hex, use &H. For example, 2&HC@P4 will give you
49156 on the screen. The provision of this built-in converter means
that you don’t have to bother with learning the rather tedious
methods for converting between denary and hex. Just in case you
want to do thiswhenyouare not neara friendly Dragon, though, the
methods are shown in Appendix C. The Dragon, however, has no
built-in assembler. An assembler would allow you to write machine
code almost as easily as you write BASIC, by using command
words. Since an excellent assembler is available on cartridge
(Appendix B) however, this is not a catastrophic loss.

Assuming, which is reasonable, that you don’t want to commit
yourself to the cost of a full-scale assembler at this point, what do
you do to create machine code programs? The answer is that you
should design your program in assembly language, which is by far
the easiest way to design machine code programs, and then you
should convert into hex code. Converting means looking up - in a
set of tables called the instruction set- the hex number that
represents each instruction. Instruction sets are provided by the
manufacturers of all microprocessors, and Motorola, who designed
the 6809, provide one for this chip. Just to assist you, a quick
reference guide has been included in this book, in Appendix D.
Don’t refer to it at the moment - it’ll put you off!

Negative numbers

Useful as the denary-hex conversion commands of the Dragon are,
they are deficient in one respect — they don’t handle negative
numbers. Now this is unfortunate, though understandable. Negative
numbers are very importantin machine code programs, particularly
if you are working without an assembler. The reason is that you
sometimes want the MPU to do theequivalent of a GOTO, perhaps
jumping to a step which is thirty steps ahead of its present address.
This sort of thing is usually programmed by supplying a data

The Microprocessor 33

number which is the number of steps that you want to skip. If you
want to jump back toa previousstep,however,you will need to use a
negative number forthis data byte. This is very common, because it’s
the way that a loop is programmed in machine code. We need.
therefore, to know how to write a negative number in hex.

What makes it awkward is that there is no negative sign in hex
arithmetic. There isn’t one in binary, either. The conversion of a
number to its negative form is done by a method called
complementing, and Fig. 3.4 shows how this is done. At first sight,
and very often at second, third, and fourth, it looks entirely crazy.
When you are dealing with a single byte number, for example, the
denary form of the number — 1 is 255! Y ou are using a large number

Binary: Number (8 bits) PPL11P1Pl (denary 53)

Step l: change each @ to
1, each L to @ 11#9101M

Step 2: add ! +1

Result is negative

form of number 11991911 (denary 293)
Denary: Number 53

Step 1: subtract from 256 203

This is negative form (in denary)

$35 Remnember that F
represents 15
. : denary, and
Step l: subtract from $Fl- g‘g R T
ﬁ denary, which
is A in hex.
Step 2: add 1 +]1 ! This is easier
CB than a subtraction
from $109, which
‘involves the use
of carries in hex.

Hex: Number

Result is hex form of negative number

An alternative is to do the denary conversion, then
convert back to hex.

Fig. 34. The two's complement, or negative form, of a binary number.

34 /Introducing Dragon Machine Code

to represent a small negative one! It begins to make more sense when
you look at the numbers written in binary. The numbers that can be
regarded as negative all start witha I and the positive numbersall
start with a. The MPU can find out which is which just by testing
the left-hand bit, the most significant bit.

It’s a simple method. which the machine can use efficiently, but it
does have disadvantages for humans. One of these disadvantages is
that the digits of a negative number are not the same as those of a
positive number. For example, in denary —4() uses the same digits as
+40. In hex,—4 () becomes $D8 and +4 §) becomes $28. The denary
number —85 becomes $AB and +85 becomes $55. The second
disadvantage is that humans cannot distinguish between a single
byte number which is negative and one which is greater than 127.
For example, does $9F mean 159 or does it mean —97? The short
answer is that the human operator doesn’t have to worry. The
microprocessor will use the number correctly no matter how we
happen to think of it. The snag is that we have to know what this
correct use is in each case. Throughout this book, and in others that
deal with machine code programming, you will see the words
‘signed’ and ‘unsigned’ used. A signed number is one that may be
negative or positive. For a single byte number, values of @ to $7F are
positive, and values of $89 to $FF are negative. This corresponds to
denary numbers @ to 127 for positive values and 128 to 255 for
negative. Unsigned numbersarealwaystaken as positive. If you find
the number $9C described as signed, then, you know it’s treated as a
negative number (it’s more than S89). If it’s described as unsigned,
then it’s positive, and its value is obtained simply by converting.
How do we convert a signed single-byte hex number into denary,
when the Dragon won’t accept negative numbers for conversion?
Simple, just type ?&HXX—256, where XX is the hex number. For
example, ?& HFF-256 will give you —I. which is the correct value
for $FF treated as a negative number.

Light relief

Just to take a break fromallthisarithmetic(that’s what they called it
before it became known as ‘maths’), let’s look at screen displays on
the Dragon. Each part of the screencan be controlled by whatever is
stored in part of the memory, but there are two varieties of this
memory. The simplest one to work with is the part which is called
‘text screen memory’. It takes up memory addresscs $499 to SSFF.

The Microprocessor 35

which is 1024 to 1535 in denary. Notice, incidentally, how neatly the
range fits in hex scale. What we mean by ‘text screen memory’ is that
this piece of memory is treated in a special way. Anything that is
stored here will be used to display text on the screen. That means
that any ASCII code that you store at an address in this range will
produce the corresponding letter or graphics shape on the screen.
Try this - press the CLEAR key to clear the screen, and then type:

POKE&H 500,65

and press ENTER. The result is the letter A appearing at the left-
hand side of the screen, halfway down. The computer has converted
the ASCII code of 65 that was stored at position & H509 into a set of
numbers that will produce the letter ‘A’ on the screen at this position.
You can program this sort of thing in a loop, as Fig. 3.5 shows. You

10 FOR N=%H40@ TO &HSFF

2@ POKE N,65:NEXT
Fig. 3.5. A program which fills the screen with A's,
have to be careful how you type this. If you don’t leave a space
between the last § of & H4(0 and the ‘T* of TO. then the computer
tries to read the T as being part of the hex number. and stops with an
SN ERROR message. Look out forthissort of thing when you make
use of hex numbers in POKE instructions.

The effect of this loop is to fill the screen with A’s. The filling is not
particularly fast, because we're using BASIC inthe loop. Later, we’ll
look at the same sort of thing in machine code, which is stunningly
fast! For the moment. though. look at the effect on this program of
replacing 65 by another number which is the code for one of the
graphics blocks, like 136. It’s quite useful and, if you want to avoid
the ‘hole’ in the pattern caused by the OK message and the cursor,
then add an endless loop to the program, like:

39 GOTO 3p

If you want to see this zip along a lot faster. then turn on the high
speed clock rate with POKE& HFFD7,0. This is the same command
as we used before, but in hex terms instead of denary.
The Dragon uses memory for graphics as well, however, and the
memory for this is organised in a different way. The graphics
10 PMODEQ@: PCLS: POKEXH70@, 65

2@ SCREEN1, @
1ee GOTO1QQ@

Fig. 3.6. Poking to the graphics memory.

36 /ntroducing Dragon Machine Code

memory is arranged in eight pages. each of 3609 bytes. This is a lot
more than the $20¢ bytes that we use for the text screen, and its use is
not so automatic. If we poke a byte into part of this memory. for
example, we'll see nothing on the screen. This is because the
Dragon normally displays the character that corresponds to a byte
in the text screen memory. To see what is stored in the graphics
memory, we have toswitch to a graphics mode. and select the correct
page. Try, for example, the program in Fig. 3.6. This selects a mode.
in this case PMODE®, and then clears the graphics screen memory,
using PCLS. and then pokes the number 65 into address $79¢. This
is anaddressin graphics page I, butitcan't produce any effect onthe
text screen. To make it visible, we have to switch to displaying a
graphics mode. Using PMODE@ makes use of page ! for display,
and SCREENI.Q makes the effect visible. The result - well, take a
look for yourself! It’s a couple of bright spots near the top left-hand
corner

The next thing we have to figure out is why the number 65
(denary) should cause these two dots to appear. To help in this
investigation, alter the program so that the number 255 is poked,
and try it again. This time yousee a line at the left-hand side. Now try
poking the number &H55. This gives four dots. Light dawns when
we write these numbers in binary form. 65 denary is $41, and in
binary it's @10@PpP 1. The number 255 is [1111111, and $55 is
PIQ1QIP1. Where there’s a | in the binary number, there’s a dot on
the screen! The memory address &H7¢@ must service this strip of
the screen. Now try the same program using the other PMODE
numbers, | to 4. Inthe modes §,2, and 4 you will see the pattern
appear as light on dark. In modes I and 3, it appears as white spots
on green. The spacing between the spots also changes from one
mode to another. The greater the resolution of the graphics mode,
the closer and smallerare the spots. If youaren't too confidentabout
graphics modes, then you should brush up with the chapter in my
book, The Dragon 32 and How to Make the Most of 1, or take a
look at the more advanced book by Steve Money, Dragon Graphics
and Sound.

We can use this method to create patterns of our own. If we stick

1@ PMODE2:PCLS: POKE4H700, 24

20 FOR N=1TO7:READ D:POKEXH7@@+N#16,D
3@ NEXT:SCREEN 1,0

4@ GOTO4@

10@ DATA24, 255, 255, 170,170, 17@,17@

Fig. 3.7. A program which creates a shape on the graphics screen.

(a)

Bytes

The Microprocessor 37

to PMODES at the moment, theneach line on the screenstarts at an
address which is $19 greater than the one before. For example, if
you add the line:

15 POKE&HT71§.255

to the program of Fig. 3.6, you’llsee alineappear under therow of
spots. We can, therefore, create shapes on the screen by poking
numbers to addresses that are $19 apart in successive lines. This is
illustrated in the program of Fig. 3.7. When you RUN this one, you
will see an octopus (well, quadropus) shape appearing. This has been
programmed by poking numbers into the graphics screen memory.
How did we get the numbers? Figure 3.8 shows how. I used an

Denarynumbers Byte cedes

——
w
L - R © : Denary Hex

128
64
32
1
]
4

2

1

24 $18
255 $FF
255 $FF
170 $AA
170 $AA
170 $AA
170 $AA
170 $AA
838083883 B3 2% EREE
Hex numbers

Fig. 3.8. Planning shapes: (a) the planning grid, {b) the example which has
been used. The grid is of 8 X 8 squares, but larger number of lines of eight
squares across could be used if wanted

arrangement of 8 X 8 squares, and shaded in the ones that I wanted
to see lit. Since I'm using the eight squares across to represent
positions in a binary number, I have written in the denary values that
each square represents. By adding these up for each line, a set of
numbers is found. For example, the ‘head’ in the first line has
squares 16 and 8 shaded, totalling 24. This is the number that is
poked into the first of the set of addresses. The next two form the
body, using all squares lit, number 255. There’s no reason to confine
ourselves to just eight squares down — we can use as many as the
screen will hold. We have to confine ourselves to 8 across at any one
memory address, however, because there are only eight bits in a
byte. It opens up a whole new set of prospects in graphics, doesn’t it?

Chapter Four

6809 Details

Registers - PC and accumulators

A microprocessor consists of sets of memories, of a rather different
type to ROM or RAM. whichare called regisrers. These registers are
connected to each other and to the pins on the body of the MPU by
the circuits that are called gares. In this chapter, we shall look at
some of the most important registers of the 6809 and how they are
used. A good starting point is the register which is called the PC
short for Program Counter.

No, it doesn’t count programs — what it does is to count the steps
in a program. The PC is a sixteen-bit (two byte) register which can
store a full-sized address number, up to SFFFF (65535 denary). It’s
purpose is to count the address number. and the number that is
stored in the PC will be incremented (increased by 1) each time an
instruction is completed. or when another byte is needed. For
example, if the PC holds the address SIF3A, and this address
contains an instruction byte, then the PC will increment to $1F3B
whenever the MP U is ready for another byte. The next byte will then
be read from this new address

What makes the PC so important is that it's the automatic way by
which the memory is used. When the PC contains an address
number, the electrical signals that correspond to the §’s and I's of
that address appear on a set of connections, collectively called the
address bus, which link the MPU to all of the memory. RAM and
ROM. The number that is stored in the PC will select one byte from
the memory, the byte which is stored at that address number. At the
start of a read operation, the MPU will send out a signal called the
read signal on another line, and this will cause the memory to
connect up the selected parts to another set of lines, the data bus.
The signals on the data bus then correspond to the pattern off)’s and
I's that is stored in the byte of memory that has been selected by the

6809 Details 39

address in the PC. Eachtime thenumberin the PC changes.another
byte of memory is selected, so that this is the way by whichthe MPU
can keep itself fed with bytes. When the MPU is ready for another
byte, the PC increments, and another read signal is sent out.

There are other ways in which the PC number can be changed, but
for the moment we’ll pass over that and look at another register, the
accumulator. The accumulator of a microprocessor is the main
‘doing’ register of the MPU. This means that you would normally
use it to store any number that you wanted to transfer somewhere
else, or add to or carry out any otheroperationupon. The name of
accumulator comes from the way in which thisregisteroperates. If
you have a number stored inthe accumulator,and you add another
number to it, then the result is also stored in the accumulator. The
nearest equivalent in BASIC is using a variable A. and writing the
line:

A=A+N

where N is a number variable. The result of this BASIC lineisto add
N to the old value of A, and make A equal to this newvalue. The old
value of A is then lost. The accumulator acts in the same way, with
the difference that an accumulator can’t store a number greater than
255 (denary).

The 6809 has two accumulator registers. labelled A and B. The
importance of these is that they are used much more than the other
registers. This is because so many actions can be carried out more
quickly, more conveniently. or perhaps only. insuchanaccumulator.
When we read a byte from the memory, we usually place it in one of
these accumulators. When we carry out any arithmetic or logic
action, it will normally be done in anaccumulator and the result also
stored in the accumulator.

Addressing methods

When we programin BASIC. we don’t have to worry about memory
addresses at all unless we are using PEEK or POKE. The task of
finding where bytes are stored is dealt with by the operatingsystem
of the machine. When a variable is allocated a value in a BASIC
program, as, for example, by a line like:

10 N=12

40 Introducing Dragon Machine Code

we never have to worry about where the number 12 is stored, or in
what form. Similarly, when we add the line:

20 K=N

we don’t have to worry about where the value of N was stored or
where we will store the value of K. Remembering our comparison
with wall building, we can expect that when we carry out machine
code programming, we shall have to specify each number that we
use, or alternatively the address at which the number is stored. This
way in which we obtain a number, or find a place to store it, is called
the addressing method. What makes the choice of addressing
method particularly important is that a different code number is
needed for each different addressing method for each command.
This means that each command exists in several different versions,
with a different code for each addressing method. A list of all the
6809 addressing methods at this stage would be rather baffling, and
for that reason has been consigned to Appendix E. What we shall do
here is to look at some examples of selected addressing methods and
the way that we write them in assembly language.

Assembly language

Trying to write downmachinecode directly as a set of numbers is a
very difficult process which is liable to errors from beginningto end.
The most useful way of starting to write a program is to write itin a
set of steps in what is called assembly language (or assembler
language). This is a set of abbreviated command words, called
mnemonics, and numbers which are the data or address numbers.
The numbers can be in hex orin denary, provided they are supplied
to the computer in the correct form. Each line of an assembly
language program indicates one microprocessor action, and this set
of instructions is later ‘assembled’ into machine code, hence the
name.

The aim of each line of an assembly language program is to show
the action and the data or address that is needed to carry out that
action, just as when we make use of TAB in BASIC we need to
complete the command with a number. The part of the assembly
language that specifies what is to be done is called the operator, and
the part which specifies what the action is done to or on is called the
operand. A few instructions need no operand, and we’ll look at some
later.

6809 Details 41

An example makes this easier. Suppose we look at the assembly
language line:

LDA #312

The operator is LDA, a shortened version of LOAD A, meaning
that the accumulator register A is to be loaded with a byte. The
operand is #$12, of which the $12 means that thisis 12 hexadecimal,
rather than twelve denary. The other mark, the hashmark &, is used
to show the addressing method that is to be used, a method called
immediare addressing.

The whole line, then, should have the effect of placing the number
$12 into the accumulator register A. It is the equivalent in machine
code terms of the BASIC instruction:

A=&H12

You could imagine that the memory which held the number was
inside the microprocessor rather than part of the RAM memory,
and was labelled with the name A.

A command such as LDA #$12 is said to use immediate
addressing, because the byte which is loaded into the accumulator
must be placed in the memory byte whose address immediately
follows that of the instruction byte. There is one code number for the
LDA # part of the whole instruction, and this byte is $86, so that the
hex sequence in memory of 86 12 will represent the entire command
LDA #$12. 1t’s a lot easier to remember what LDA #$12 means
than to interpret 86 12, however. which is why we use assembly
language as much as possible.

Immediate addressing like this can be convenient. but it ties you
down to the use of one definite number. It’s rather like programming
in BASIC:

N=4%12 +3
rather than

N=A*B+C

In the first example, N can never be anything else but 51, and we
might just as well have written: N = 51. The second example is very
much more flexible, and the value of N depends on what values we
choosefor the variables A, B and C. When a machine code program
is held in RAM, then the numbers which are loaded by this
immediate addressing method can be changed if we must change

42 Introducing Dragon Machine Code

them, but when the program is held in ROM no change is possible.
That’s just one reason for needing other addressing methods. One of
these other methods is extended addressing.

Extended addressing uses a complete two-byte address as its
operand. This creates a lot of work for the 6809 because, when it has
read the code for the operator, it will then have to read two more
bytes to find the memoryaddressat whichthe data isstored. It will
then have to placethisaddressin the PC, read inthedatabyte, carry
out the operation, and then restore the next correct address into the
PC. Fig. 4.1 shows in diagram form what has to be done. An

Addresses
in hex

[

<+—start of instruction

code for load accumulator,
extended addressing

tirst byte of address

}fcrms address of §7FFE

second byte of address

«—end of instruction

[]

]
I
|
|

next code

!
(I
fE |

47 byte which is leaded into accumulator
after address $7rf#2 has been reaa
Fig 4.1. How the extended aderessing method works

extended-addressed operation is therefore a lot slower to carry out
than an immediate one. It’s easy to alter the data, however, since any
byte may be stored at the address which is specified.

Suppose, for example, that we have the instruction:

LDA $7FFE

In this slice of assembly language, the operator is LDA (load the
accumulator A) and the operand is the address $7FFE. What you
have to remember is that what is put into the register A isnot 7FFE,
which is a two-byte address, but the data byte which is stored in

6809 Details 43

memoryat this address. The effect of thecomplete instruction. then.
is to place a copy of the byte which is stored at STFFE into the
accumulator A of the 6809. When the instruction has been
completed. the address $7FFE will still hold its own copy of the byte.
because reading a memory does not change the content of the
memory in any way.

We can also use the extended addressing method in a command
which will store a byte into the memory. The command:

STA $7FFF

means thatthe byte that is stored in the accumulator A istobecopied
to memory at address S7TFFF. Thisaction does change the content of
this memory address. but the accumulator A will still hold the same
byte after the instruction has been carried out.

Direct page addressing

Direct page addressing is a method that allows you to specify a full
address by using only one byte! The secret is another register, the
Direct Page (DP) register. This can beloaded with the upper byte of
an address number by transferring a byte from another register.
When, later in the program. an address is needed. then only the
lower byte needs to be specified. The byte in the DP register will be
taken as being the upper byte of the address. For example. if most of
the important bytes that a program might need were stored in the
range S5FP@ to SSFFF. thenwe could load $5F into the DP register.
A step such as:

LDA $3F

would then load the accumulator with a copy of the byte that is
stored at address S5F3F. The $SF has been provided from the DP
register, and the $3F from the data byte that followed the LDA
instruction. When only onebyteis specified following an instruction
like LDA. then anassembler will automatically use the code for DP
addressing. The DP register of the Dragon is usually set to $09.

Indexed addressing

Indexed addressing is a method which is particularly useful on the
6809. The principle is that a sixteen-bit register is used to hold an

44 Introducing Dragon Machine Code

address, the address of a byte in the memory. This address can be
used directly, or it can be used as a base address. Use as a base
address means that we can add a number to the address before using
it. For example, suppose that we had the number 700§ stored inan
index register. If we like. we can use this to specify the use of the
address $700 9, or alternatively we can add a number to it. If we add
4, for example, then we could load from $7994 or store to this
number.

There are five registers in the 6809 that can be used in this way, the
X,Y,U,S. and PC registers, but we generally make most use of the X
and Y registers in this type of addressing. Once we have decided
which register to use, there are still several choices of the way in
whicha number can beaddedto the address. The simplestmethod s
called constant indexed addressing. A number constant is specified
in the command, and this number is added to the number in the
register before it is used as an address. For example, the line:

LDA 5.X

means that there is an address stored inthe X register,and S will be
added to this address number before it is used. We can also. in
assembly language, use a label. a sort of ‘variable name’ for a
number. We could, therefore, have:

LDA CONST.X

where CONST means a number that has been assigned to the label
name of CONST. As before, this number will be added to the
number stored in the X register, and the result used as an address. A
useful feature of the 6809 is that this number or label which is added
incan be zero. It canalso be a signed number of 5, 8 or 16 bits, which
allows the range of memory that this addressing method can cover to
be very large. It’s important to realise that when you make use ofan
index register in this way, the number that is stored in the index
register is not changed - the result of the addition is not put back into
the register.

There are also more exotic variations on indexed addressing. One
of them is accumularor indexed addressing. In this variety, the
number in one of the accumulators (A, B or D) is added to the
number in the index register before the total is taken. The D
accumulator is not really another different register, it’s simply the A
and B registers combined and used as one sixteen-bit register. A
more interesting variety for us at the moment is the method that is
described as auro increment|/decrement zero offser indexed. That

6809 Details 45

mouthful means simply that we can increment or decrement the
number in the index register each time it is used. When this method
is used, the number that is added to the register content is zero
(hence ‘zero-offset’), and we specify the increment by a + sign,
decrement by a — sign. We can also specify one increment or two ;
adding + will increment once, adding ++ will increment twice, and
the same idea applies to the use of the — signs. Using these
commands does change the number that is stored in the index
register.

This auto increment/ decrement method allows us to load from or
store to adifferent address each time the instructionis used. The way
in which the instruction is carried out is rather special, though.
When we use auto increment, the incrementing of the register is
carried out after the operation. For example, if we write the
command

LDA §.X+

then the accumulator A will be loaded from the address that is stored
in the X register. After the loading is complete. the number in the
address register will be incremented once. Putting the + sign in the
assembly language command after the X reminds us that the
increment action is carried out after the loading (or whatever)
operation. When a decrement is used, the register number is
decremented before the operation. and the— sign is placed before the
register name as a reminder. Take, for example:

STA p.——X

This means that the number in the X register will be decremented
twice (two subtracted), and then used as the address for storing the
byte in the A register.

Indirect addressing

Indirect addressing means going to an address to pick up another
address at which a byte is located. It's like going to the address of a
tourist office to find the address of a hotel (for a quick byte?). The
6809 allows several of its addressing methods to be used in this way.
which seems rather exotic at this stage but turns out to be very useful
when you get deeper into programming. Indirect addressing is
indicated in assembly language by the use of square brackets, and it

46 Introducing Dragon Machine Code

can be used with extended addressing and a!l the forms of indexed
addressing.
Just to give one brief example, the line:

LDA [$7FFE]

means indirect extended addressing. Thedatabytethat we wantis
not at the address $7FFE. Instead. its high byte is at the address
$7FFE and its low byte at $7FFF. If we imagine that $3A isstored at
$7FFE. and $47 is stored at $7FFF. then the address that the 6809
will actually use to load from is the address $3A47. What's useful
about this? Well, just the point that the bytes in the addresses $7FFE
and $7FFF can be changed. even within the program. to make the
loading come from different addresses. It all. believe it or not, makes
the task of the programmer easier, and seasoned programmers who
are not tied to the continual use of other types of microprocessors
are rather keen on the many different ways that the 6809 allows you
to address memory.

Relative addressing

Relative addressing is one of the first addressing methods that was
everused. and it is not used for many commands nowadays. Relative
addressing means that the operand of an instruction can be one or
two bytes. and the address that is going to be used isfound by adding
this number (called the ‘offset’) to the‘current address’. which is the
number in the program counter. It’s rather like the old-style
Treasure Island maps which specify‘one step left, two forward, three
right ... and so on. You don't know where this will get you until you
know where to start. but when relative addressing is used in a
microprocessor. the starting place is usually the address in the PC.

The 6809 uses relative addressing for its BRANCH commands.
There are two varieties, short and long. The short branches use a
single-byte number, signed. as an offset. The use of a single-byte
signed number means that we can jump toa new address whichis up
to 127 steps forward or 128 steps back from the present one. The
alternative is long-relative branching. This uses a two-byte number,
treated as signed, following the command, and it allows a range of
+32767 to—32768 steps from the address of the branch command. A
long branch can be to any part of the normal 64K memory. but its
use takes more time than the short branch. These branches are the
machine code equivalents of GOTO, but with the difference that

6809 Details 47

they can be made to depend on a condition, like the accumulator
containing zero. It's as if there were one single BASIC instruction
which carried out the effect of:

IF A=9 THEN GOTO.

We'll look at branch instructions in a lot more detail later.

The other registers

Of the other registers, S and U are both sixteen-bit registers that we
shall leave strictly alone during the course of this book, until we get
to Chapter 9. They are the type of registers that are called srack
pointers, and they are used to locate bytes which the MPU has
stored temporarily. If you interfere with what is stored in the S
register. you may upset the operating system of the computer. The U
register is safer to use. but in this book we shall not be concerned
with it. The Direct Page register DP is used in connection with direct
page addressing, as already mentioned. That leaves the CC
(Condition Code) register to deal with in more detail now

The CC register

The condition code register. sometimes called the Flag or Status
register. isn’t really a register like the others. You can’t do anything
with the bits in this register, and they don’t even fit together as a
number. What the CC register is used for is as a sort of electronic

Number in accumulator 1011901 19
Number added 11999191

Result 101111911

This consists of nine bits, and the accumulator
can hold only eight. The most significant bit
is transferred to the carry flag of the status
register.

Accumulator now holds P1111P11
Carry bit is set (equal to 1)

Fig. 4.2. Why the carry bitis needed.

48 Introducing Dragon Machine Code

note-pad. Each bit in the register (there are eight of them) is used to
record what happened at the previous step of the program. If the
previous step was a subtraction that left the A register storing zero.
then one of the bits in the CC register will go from value @ to value |
to bring this to the attention of the MPU. If you add a number to the
number in an accumulator. and the result consists of nine bits
instead of eight (Fig. 4.2) then another of the bits in the CC register is
‘set’, meaning that it goes from § to I. If the most significant bit ina
register goes from @ to I (which might mean a negative number),
then another of the CC bits is set. Each bit, then, is used to keep a
track of what has just happened. What makes this register important
is that you can make branchcommands depend on whether a CC bit
is set (to 1) or reset (to).

Eatire Halt
lag any Thasebits are used for
) mors specialised programs
‘ o e ETYIE which are not covered in
ask E | this book

mostswgmhcan(} E l F I H I | I N '! Z I V [C] least significant

| |
‘ 2610 Carry Theseare thebils you
flag it are most likely to use
Negative Inyour programs
flag

Fig. 4.3. The bits of the CC register. Only three of these are extensively used in
mest programs.

Figure 4.3 shows how the bits of the CC register of the 6809 are
arranged. Of these bits, §,2 and 3 are the ones that we are most likely
to use at the start of a machine code career. The use of the others is
rather more specialised than we need at the moment. Bit § is the
Carry Flag or Bit. This is set (to 1) if a piece of addition has resulted
in a carry from the most significant bit of a register. If there is no
carry, the bitremains reset. When asubtraction is being carried out
(or a similar operation like comparison), then this bit will be used to
indicate if a ‘borrow’ has been needed. It can for some purposes be
used as a ninth bit for either accumulator, particularly for shift and
rotate operations in which the bits in a byte are all shifted by one
place (Fig. 4.4.).

The Zero Flag is bit 2. It is set if the result of the previous
operation was exactly zero, but will be reset (§) otherwise. It's a
useful way of detecting equality of two bytes - subtract one from the
other and, if the Zero Flag is set, then the two were equal. The
Negative Flag is set if the number resulting in a register after an

68089 Details 49

Carry
it msp Accumulator o

[TeTol To[+]1To]
- -—

Afteraleftshift. thebits
will be:

Carry
bit msb Accumulator Isb

[1 CIeCTerTTele]

Fig. 4.4. Using the Carry Bit(or Flag)ina shift operation, inwhich all the bits of
a byte are shifted one place to the left.

operation has its most significant bit equal to I. This is the type of
number that might be a negative number if we are working with
signed numbers. This bit is therefore used extensively when we are
working with signed numbers. Unlike most MPU’s, the 6809 allows
the programmer to work with the contents of the CC register. You
can transfer its contents (which means copy - the bits are not moved
out of the CC register) to any other single byte register. More
usefully, you can exchange the contents of the CC register with the
contents of any other single byte register. This will change the
contents of the CC register. There are also a few commands which
allow you to change some of the bits of the CC register selectively -
but that's not beginner's work! Keep it in mind for when you're an
expert.

Chapter Five
Register Actions

Accumulator actions

Sincetheaccumulatoris the mainsingle-byte register, we canlistits
actions and describe them in detail, knowing that whatever holds
good for the *A” accumulator of the 6809 will also hold good for the
‘B’ accumulator (with one minor exception). Of all the accumulator
actions, simple transfer of a byte is by far the most important. We
don't, for example, carry out any form of arithmetic on ASCll code
numbers, so that the main actions that we perform on these bytes are
loading and storing. We load the accumulator with a byte copied
from one memory address, and store it at another. Very few
computer systems allow a byte to be moved directly from one
address to another, so that the rather clumsy-looking method of
loading from one address and storing to another is used almost
exclusively.

The next most important group of actions is the arithmetic and
logic group, which contains addition, subtraction, AND, OR and
COM (the logical NOT action). The multiply action also falls into
this group, and we can add to it the SHIFT and ROTATE actions
which we looked at briefly in the previous chapter. The effects of the
6809's shift and rotate commands, with their assembly language
mnemonics, are shown in Fig. 5.1. A shiftalways resultsina register
losing one of its stored bits, the one at the end which is shifted out.
Most types of shifts - the arithmetic shift right is the exception
cause the register to gain a zero at the opposite end. The carry bit is
used as ninth bit of the accumulator in all of these shifts. The shift
action can be carried out on either the ‘A’ or the ‘B accumulator, or
on a byte that is stored in the memory. The effect of a shift on a
binary number stored in the register is to multiply the number by
two if the shift is left, or to divide it by two if the shift is right (Fig.
5.2).

Register Actions 51

ASL (Arithmetic shift left)

Carry msb_ I P
[l [TTTTTTTI= ©scciectrionmonay
shifl

ASR (Arithmetic shift right)

Isb carry
s G TTTTTTT o= (st
value after the selected byte in memory

shiftasithadbefore msb,

tl
shift
LSL (Logic shift left)
(H flag is not = = ko AffectsA Bes
affected) D* m €) clecied bytein memory
shift
LSR (Logic shift right)
mb_ Isb carry
R N N S N OO
shift
ROL (Rotate left)

= e e AlfectsA Bo
C O =~ IT1T7TT] <j selecied byie m memory

ROR (Rotate right)

o g e Affects AB or
[TTITTT] D Seciadbytammemory
-

Fig 61 The 6809 shift and rotate instructions.

A rotation, by contrast, always keeps the same bits stored in the
register, but the positions of the bits are changed. The 6809 has two
rotate commands, one for rotate right and the other for rotate left.
Once again, they use the carry bit as the ninth bit of the register.
Either A or B accumulator can be used, and the action can be carried
out ona byte stored in the memory.

A third group of accumulator actions contains the increment,
decrement and comparison commands. I ncrement means adding |
and decrement means subtracting 1. The command whose
mnemonic is INCA will therefore have the effect of adding | to the

52 Introducing Dragon Machine Code

nn n-n Hex 35 Denary 53

left shift

0| Hex6A Denary 196

Hex 5A Denary 9§

right shift

o]0 [0] 1] Hex 20 Denary 45

Fig. 6.2 The effect of a shift on a number

number that was stored in accumulatorregister A. Similarly, DECB
willhavetheeffect of subtracting I fromthenumberthatwasstored
in accumulator B. These actions can also be carried out on any byte
that is stored in the memory. Their actions will affect the zero and
negative flags in the CC register, so that if either command causes
the register or memory byte to contain zero, or to contain a number
whose most significant bit is set, then the flags reveal this.

The CMP (Compare) instruction is a particularly useful one.
Looking at the moment at its use applied to the ‘A’ accumulator
only, CMPA is the mnemonic. It must use one of the standard
memory addressing methods, and its effect is to compare the byte
that was copied from the memory with the byte that is already
present and stored in accumulator A. Compare in this respect means
that the byte copied from memory is subtracted from the bytein the
accumulator. The difference between this instruction and a true
subtraction is that the resultis not stored anywhere! The result of the
subtraction is used to set flags, but nothing else, and the byte in the
accumulator is unchanged. For example, suppose that the
accumulator contained the byte $4F, and we happen to have the
same size of byte stored at address $327F. If we use the command:

CMPA $327F

then the zero flag in the CC register will be set (to I), but the byte in
the accumulator will still be $4F, and the byte in the memory will still
be $4F. A subtraction would have left the content of theaccumulator
equal to zero.

Why should this be important? Well, suppose you want a program
to doonethingif the‘Y’ key is pressed, and something different if the
‘N’ key is pressed. If you arrange for the machine code program to

Register Actions 53

store into the accumulator the ASCII code for the key that was
pressed, you can compare it. By comparing it with $4E (the ASCII
code for *N"), we can find if the ‘N’key was pressed. If itwas, the zero
flag will be set. If not, we can test again. By comparing with $59, we
canfindif the‘Y” key was pressed - onceagain, this would cause the
zero flag to be set. If neither of these comparisons caused the zero
flag to be set, we know that neither the 'Y’ nor the ‘N* key was
pressed. and we can go back and try again. If it looks very muchlike
the action of the INKEYS$ loop in BASIC, you're right — it is.

Finally, we have the test-and-branch actions. These. as the name
suggests,allow the flags in the CCregister to be tested, and will make
the program branch to a new address if a flag was set. Which flag?
That depends which branch-and-test instruction you use, because
there’s a different one for each flag, and for each state of a flag. For
example. consider the two tests whose mnemonics are BEQ and
BNE. BEQ means ‘branch if equal to zero'. As this suggests, it will
cause a branch if theresultof asubtractionor comparison is zero. In
other words. it causes a branchtotakeplaceifthezeroflagisset. It's
‘opposite number’ BNE means ‘branch if not equal to zero™. It will
cause a branch to take place if the zero flag is not set. There are,
therefore, two branch instructions which test the zero flag, but in
opposite ways. The same sort of thing goes for most of the other
flags. There’s also a branch instruction, mnemonic BRA, which
doesn’t carry out any tests, likea GOTO withno IF precedingit. and
a curious ‘branch never’ which doesn’t do anything! In fact, it’s
useful for wasting time or leaving room forcode you haven't written
yet.

The complete list of all the available branch instructions is shown
in Fig. 5.3. Many of these are instructions that you'll probably never
use, and the really important ones are the ones that use the zero,
carry and negative flags. All of them use relative addressing. There
are two varieties of relative addressing used with these instructions.
The ordinary variety needs one number byte to follow the code for
the branch. This number, as we noted earlier. is treated as a signed
number (in other words, if it’s more than $7F it's treated as
negative). It is added to the address which is in the PC at theinstant
when the branch is carried out. The result of this addition is the
address to which the branch goes, so the next instruction that is
carried out will be the one at this address. This type of branch, which
uses a single byte ‘displacement’ number, permitsashiftof upto 127
(denary) places forward, or 128 backward. That's because a single
signed byte can't exceed these values. The 6809 also permits what is

54 Introducing Dragon Machine Code

lmmesic Meaning Catke
Unconditionals Bk Branch aluiays $20 causes a branch irrespective
of previous action
R Branch e 21w L
B5H branch to subreitine $8D ge Ce susroutine
Cenditional, B Branch on negative 28 branch if N flag is set (1)
siople el Branch on positive 24 branch if N flag is reset ()
BEQ Branch on zero 27 branch if Z flag is set (1)
wE Branch on not-zero 26 branch if Z flag is reset (§)
wvs Branch on overflow 29 branch if V flag is set (1)
e Branch on no overflow $28 branch if V flag is reset ()
3 branch on carry set 25 branch if C flag is sec (1)
BCC Branch on carry clear $24 branch if C flag is reset (4)
Conditional, BT Branch en greater $2E branch if comparison positive
signed nuzhers HLE Branch en lesser 2F branch if comparison megative
ME beaner sreaerforuil 1O branch If sompariven posicive
or equal
T Branch lesser/equal §20 branch if comparison megative
or equal
Conditional, BHL Branch en greater $22 branch if comparison positive
unsigned numbers (unsigned)
518 Geanch um Lusser $23 branch if comparison negative
(unsigned)
[T Branch on greater/equal $2¢ branch if comparison positive
or zero (unsigned)
HLE Branch on lesserfequal $25 branch if comparison negative

or zero (unsizned)

Note: Long branches use L in front of mnemonic (LEKA, LELQ) and use an extra $1) byce
Tn front of the branch byte (10 20 or 10 27)

Fig. 5.3 The complete list of 6809 BRANCH instructions

called a ‘long branch’, with a two-byte number following the
instructions code. This allows a branch of up to 32767 (denary)
places forward or up to 32768 places backward.

Interacting with Dragon

The time has come now to start some practical machine code
programming of your Dragon. Thisis not simply amatter of typing
the assembly language lines as if they were lines of BASIC. Unless
you happen to have an assembler program cartridge fitted, the
Dragon will simply give you ‘SN ERROR " messages when youtry to
run these programs. Since we want to start on a small scale, we’ll
forget about assemblers at the moment, and assemble ‘by hand’.
This means that we find the machine code bytes that correspond to
the assembly language instructions by looking them up in a table.
We then poke them into the memory of the Dragon, place the
address of the first byte into the PC of the 6809, and watch it all
happen. It sounds simple, but there is quite a lot to think about, and
a number of precautions to take. To start with, the Dragon uses
quite a lot of its RAM, as we have seen, for its own purposes. 1f we
simply POKE a number of bytesinto the memorywithout heeding

Register Actions 55

which part of memory we use. the chances are that we shall either
replace bytes that the Dragon needs to use, or our program bytes will
be replaced by the action of the Dragon. What we need is a piece of
memory that is safely roped off for our use only.

This can be done by making use of the CLEAR command in
BASIC. When you use CLEAR in the usual way, such as CLEAR
199. the action is to reserve bytes atthe highest memory addressesin
RAM forstring storage. CLEAR 10§. for example. reserves space
for 199 bytes of string characters. We can combine this with another
type of clear operation, however. If, for example, you type CLEAR
109.32700 then. in addition to leaving room for 19 bytes of string
characters, you have ensured that the Dragon cannot use any
address higher than 3279¢ for its own purposes. This leaves
addresses from 3279 1 to 32767 for your machine code programs, or
for storing any bytesthat you want to be secure. 32767is the highest
address of RAM on the 32K Dragon. Note that the CLEAR
instruction has used denary numbers. but we could have used hex
provided we remembered touse &H preceding each number. In hex,
32767 is $7FFF.

The other problem is how to place the starting address for your
program into the program counter of the 6809. Fortunately, the
designers of the Dragon have been kind to you. There is a BASIC
command EXEC which will do this for you. EXEC has to be
followed by a number, and thisnumberwill be placed intothe PC. It
will, therefore, be used as the address of the first byte of your
program. Incidentally. I've taken thisas meaning ‘starting byte’. It's
possible to write programs in which the first few bytes are data, so
that the program starts at, say. the tenth byte. This creates no
problems; you simply use the address of the starting byte as the
number for EXEC.

Lastly, for the moment at least, you have to ensure that your
machine code program willstop inan orderly way. Nothing that we
have done so far willindicateto the 6809 of the Dragon where your
program ends. As a result, the 6809 could continue to read bytes
after the end of your program. until it encounters some byte which
causes a ‘crash’. This might, for example, be a byte which causes an
endless loop. Some programmers doubt if there are any byteswhich
do not cause an endless loop in these circumstances! To return
correctly to the operating system of the Dragon, you need to end
each machine code program with a ‘return from subroutine’
instruction, whose mnemonic is RTS and whose code is $39.

There’s another headachethat wedon’thave to worry about at the

56 Introducing Dragon Machine Code

moment. When you run a machine code program along with a
BASIC program in your Dragon, you are using the same 6809
microprocessor for both jobs. It can’t cope with both at the same
time, so it runs one, then the other. If you make use of the 6809
registers in your machine code program, as you are bound to do,
then you have to be quite certain that you are not destroying
information that the BASIC program needs. Suppose, forexample,
that the registers of the 6809 contained the address of a reserved
word in the ROM at the instant when your machine code program
started. It will, therefore, need this address in these registers when
your machine code program ends. This is taken care of
automatically when a machine code programiscalledintoaction by
using the EXEC command. The contents of the registers of the 6809
are placed into a part of the RAM memory which s called the szack.
This, incidentally, is another good reason for being careful as to
where you place your machine code in the memory. If you wipe out
the stack, the Dragon will quite certainly not like itt When the RTS
instruction is encountered atthe end of your machine code, the bytes
that have been stored in the stack are replaced into their registers,
and normal action resumes. If you call a machine code program into
action by any other method, not using EXEC, you will have to
attend to this salvage operation for yourself as part of your machine
code program. This involves using the PUSH (PSH) and PULL
(PL) commands - but more of that later.

Practical programs at last

With all of these preliminaries out of the way, we can at last start on
some programs which are very simple, but which are intended to get
you familiar with the way in which programs are placed into the
memory of the Dragon. You will also get some experience in the use
of assembly language and machine code, and with how a machine
code program can be run.

We'll start with the simplest possible example - a program which
just places a byte into the memory. In assembly language, it reads:

ORG 327¢1; start placing bytes here
LDA #8$55; place hex 55 in accumulator
STA $7FEE; store them at 7FEE

RTS; go backto BASIC

Thefirst line contains a mnemonic, ORG, whichyouhaven'tseen

Register Actions 67

before. It isn’t part of the instructions of the 6809, but it is an
instruction to the assembler, which in this case is you! ORG is short
for origin, and it's a reminder that thisis thefirstaddress that will be
used for your program. We’ve chosen to use an address which leaves
space for longer programs than we shall be writing in the course of
this book, and we could have chosen a higher number. It will do as
well as any other, however, and it leaves plenty of room for longer
programs. When you program using an assembler. this line can be
typed and the assembler will then automatically place the bytes of
the program in the memory starting at this address. As it is, with
assembly being done ‘by hand’. it simply acts as areminder of what
addresses to use. Note the comments which follow the semicolons.
The semicolon in assembly language is used in the same way as a
REM in BASIC. Whatever follows the semicolon is just acomment
which the assembler ignores, but which the programmer may find
useful.

Now we need to look at what the program is doing. The first real
instruction is to load the number $55 into the *‘A” accumulator. This
usesimmediateaddressing. so the number $55 will have to be placed
immediately following the instruction. The hashmark. ‘#is used in
assembly language to indicate that immediate loading is to be used.
The next line commands the byte in the accumulator (now $55) to be
stored at address S7FEE. In denary. this is 32750. It's an address
well above the ones that we shall use fort he program. Obviously, we
wouldn’t want to use an address which was also going to be used by
the program. This instruction uses extended addressing. There are
more elegant methods, but not for beginners! Finally, the program
ends with the RTS instruction, essential for ensuring that Dragon
life continues normally after our program ends.

The next step in programming is to write down the codes. Each
code has to be looked up, taking care to select the correct code for
the addressing method. The code for LDA immediate is $86. so that
is the first byte of the program which will be stored at address
(denary) 327 1. We can start a table of address and data numbers
with this entry:

32701 386
and then move on. The byte that we want to load is $55, and this has

to be put into the next memory address, because this is how
immediate addressing works. The table now looks like this:

2791 $86

58 /ntroducing Dragon Machine Code

32702 $55

The next byte we need is the instruction byte for STA, with
extended addressing. This byte is $B7. and it has to be followed by
the two bytes of the address at which we want the bytes stored. The
address 3275 translates into hex as $7FEE. so we can use the bytes
$7F and SEE following the STA instruction. The last code has to be
the RTS code of $39. so that the table now looks as in Fig. 5.4. It uses
addresses 3270 | to 32706. six bytes in all. and will place a byte into
32750. using denary numbers. Now we have to put it into memory
and make it work!

Denary Address Code (Hex)
32791 86
32792 55
32793 B7
32794 7F
32705 EE
32796 39

Fi1g. 54. The coded program, using denary addresses and hex bytes of data

This requires a BASIC program which willclearthememory.and
poke the bytes in one by one. The program isshownin Fig. 5.5. By
using CLEARS50.32709. we ensure that all memory addresses above
32700 are left unused by Dragon. That means addresses 32701 to
32767 in denary. We declare the variable A as 32709. so that we can
make use of this in the POKE commands. Lines 20 to 40 then poke
data numbers into addresses that start at 3270 . Why 3270 1? Well,
we have used POKEA+N., and with A=32700 and N=1. the first
address just has to be 32701. The POKE part of the line uses
VAL(*$H"+D$) to find the number value of the hex codes so that
they are poked in denary. We could. of course, have written the
whole program indenary, but it causes complications when we come
to write address numbers in two-byte form. Since you have to make
use of hex when you graduate to the DASM assembler, orany other

1@ CLEARSQ, 32700: A=32700

20 FOR N=1T06

2@ READ D$:POKE A+N.VAL ("LH"+D$)
40 NEXT

56 EXEC 32701

100 DATA 86,55.B7,7F,EE.39

Fig 5.5. TheBASIC program which pokes the bytes into place. Note how the
value of the hex codes is poked by using VAL('&H"+0$)

Register Actions 59

assembler. it’s as well to start getting familiar with the principles
now

The last program line, line 50. contains EXEC327¢ 1. This is the
BASIC instruction which will cause your machine code program to
run. with the start address specified. Line 199 then contains the six
bytes of data that we have worked out. When you RUN this. there’s
no obvious effect. That's because you can't see what's in address
32750. 1f you use:

?"PEEK(32750)

then youshould find the value of 85. which is thedenaryversion of
$55. the number that the program put there. Now try this: type
POKE32750.255. and then delete line 50 of your program. This is
the EXEC line. RUN the program again. and use 7PEEK(32750) to
find what's there. It should be 255. Nowtype EXEC3270 l and press
ENTER. Using ?PEEK(32750) should now give you 85 again. This
is because poking the bytes of the program into memory won't make
the program run, only EXEC does this. You can therefore poke
values into memory early in a BASIC program. and then make use
of them later with an EXEC wherever you like.

Now this isn’t an ambitious piece of work. it does no more than
POK E32750.85 would do in BASIC. but it’s a start. The main thing
at this point is to get used to the way in which machine code
operates, and how you place it into memory and run it. Another
point, incidentally, is that the machinecode is safe in memory. If you
type NEW (ENTER), the BASIC program will be cleared out. but
your machine code remains. If you POKE32750.255 now, and test
with ?PEEK(32750), you will find that this address can still be
changed by using EXEC3270 1. These bytes will remain there until
you make an effort to change them. or you switch off. You can
preserve the machine code program on tape if you like, and thisis a
technique that we’ll look at later. One step at a time. if you please!
Another thing we'll leave unsaid in this book is the alternative
method of calling up a program. using the USR command.

Now let’s try something a lot more ambitious in terms of our use

LDX #$7FEE
LA P,X
ASIA

STA 1,X
RTS

Fig. 5.6. The assembly language program for ‘multiply by two’

60 /ntroducing Dragon Machine Code

of machine code - though the example is simple enough. Figure 5.6
shows the assembly language version of the program. What we are
going to do is to load a byte into the accumulator, shift it one place
left, and then put it into memory at an address one step higher than
the address from which we took it. This looks like an open-and-shut
case for indexed addressing, so we shall start by placing an address
into the X register. This is the LDX #$7FEE step. As before, the'#”
means immediate addressing. The next line, LDA §.X means that
the accumulator is to be loaded from the address in the X register,
with @ added to this number. This makes the load from $7FEE
(32750 denary). The third step is ASLA, arithmetic left shift, so that
the bits of the byte are shifted left. Fourthly, we store this at address
$7FEF by using STA 1,X. This time, ! is added to the number
(which is $7FEE) in the X register, so that the byte is stored at
address $7FEF. We end, as always, with the RTS instruction.
Now we can put this into code form. It’s not quite so easy as
before, because of the use of indexing. The LDX instruction needs
the immediate loading code of $8E, and this has to be followed by
the two bytes of the address, $7F and $EE, in that order. The LDA
with indexed addressing is coded as $A6, but thatisn’t the end of it.
When you use an indexed instruction of this sort, the instruction
byte has to be followed by another byte. This, calied the post-hyre is
needed to specify essential information, such as which register to use
for indexing. In this example, weare using numbers like § and I, and
we want to use the X register. Now since the numbers that we want to
use as offsets are small, and will code in less than five bits (a range of
—16 to +15), then the first bit of the post-byte can be zero. Since we
are using the X register as the index (not Y, U or S), then the next
two bits are also @. The last five bits of the byte are then the
displacement written in binary. For a zero displacement, this is
0P PP, so that the whole byte in binary is 09 000999, or $00 in hex.
Easy enough! The ASLA byteis 48, andthen we get to the STA [,X.
TheSTA indexed partof itis $A7, and then we need another of these
post-bytes. The only difference between this one and the previous
one is that we want a displacement of | rather than of §, so the
number is $¢1 rather than $§9. We don’t have to go to the binary
version to work this one out! Finally, 39 is the RTS command.
Now we have to code this in BASIC. If we choose a small number
to place into $7FEE, the effect of the left shift will be to double the
number, so we can use this to obtain a bit of arithmetic wizardry.
The BASIC program is shown in Fig. 5.7. We start, as usual, by
clearing memoryspace. You needn’t worry if you have had another

Register Actions 61

1@ CLEARSO, 327@0:A=3270@

2@ FOR N=1TO9

3@ READ D%:POKEA+N,VAL("&H"+D$)

4@ NEXT:POKE&H7FEE,20@

5@ EXEC32701

6@ PRINT"2 TIMES "3;PEEK(XH7FEE);" 1S ";P
EEK {*H7FEF)

1e@ DATA BE,7F,EE,A6,00,48,A7,01,39

Fig. 5.7. The BASIC program which pokes thebytesinto ptace and then makes
use of the machine code program

program in this part of the memory before. The new program will
replace it completely and. provided that your program ends
correctly with the RTS instruction byte. the old program bytes
cannot interfere with the new ones. The values are poked into place
in the usual way in lines 20 to 40. In line 40, however, we place a
number, 20 denary. into the address S7TFEE. Now thisis the address
which will be used by the program, and the byte which is 2 in binary
form, @PPIP1PP, will be placed in this address. In line 50,
EXEC327¢1 willcarry out the machinecodeprogram,whichshould
left-shift this byte, making it § 19 10P9. In denary. this is 49, twice
2¢. Line 60 prints this result, and line 1§§ contains the data bytes.

It's simple enough but. if you knew nothing about machine code.
you would wonder how on earth the number became multiplied by
two. Onceagain, the program does nothing that could not be done
more easily and as quickly by using BASIC. The important thing,
from our point of view, is that you have now used indexed
addressing and a shift instruction. as well as getting more experience
in putting a machine code program into your Dragon by the hardest
method of all. If. incidentally, you have made any mistakes,
particularly with DATA, then it's likely that the Dragon will go into
a trance and refuse to do anything. When you have typed in a
BASIC program like this which pokes bytes into the memory,
always record the BASIC program before you RUN it. This way, if
the effect of an incorrect byte is to zonk out half the RAM, you can
switch off, then on again, and reload your program. If you didn’t
record it, then you’'ll have to type it all over again. That's hard work.
I know - I've just done it, having put 37 instead of 39 for the RTS
byte. Yes, | know I should have recorded it. Yes, | am! Make sure
you do better.

Chapter Six
Taking a Bigger Byte

The simple programs that we looked at in Chapter 5 don’t do much,
though they are useful as practice in the way that machine code
programs are written. Practising assembly language writingand its
conversion into machine code is essential at this stage, because you
can more easily find if you are making a mistake when the programs
are so simple. It’s not so easy to pick up a mistake inalongmachine
code program, particularly when you are still struggling to learn the
language!

Most beginners’difficulties arise, oddly enough, because machine
code is sosimple, rather thanbecauseit isdifficult. Because machine
code is so simple, you need a large number of instruction steps to
achieve anything useful, and when a program contains a large
number of instruction steps, it’s more difficult to plan. The most
difficult part of that planning is breaking down what you want to do
into a set of steps that can be tackled by assembly language
instructions. For this part of the planning, flowcharts are by far the
most useful method of finding your way around. I never think that
flowcharts are ideally suited for planning BASIC programs, but
they really come into their own for planning machine code.

Flowcharts

Flowcharts are to programs as block diagrams are to hardware -
they show what is to be done (or attempted) without going into any
more detail than is needed. A flowchart consists of a set of shapes,
with each shape being the symbol for some type of action. Figure 6.1
shows some of the most important flowchart shapes for our
purposes (taken from the British Standard set of flowchart shapes).
These are the terminator (start or end), the input or output, the
process (or action) and the decision steps. Inside the shapes, we can

Taking a Bigger Byte 63

Q START er END * PATH

PROCESS PATHS JOIN

DECISION INPUT or QUTPUT

Fig 6.1. The main flowchart shapes.

write brief notes of the action that we want, but once again without
detalils.

An example is always the best way of showing how a flowchart is
used. Suppose that you want a machine code programthat takes the
ASClI code for a key that has been pressed.and prints the character
corresponding to that key. A flowchart for this action is shown in
Fig. 6.2. The first terminator is "START’, because every program or
piece of program has to start somewhere. The arrowed line shows
that this leads to the first ‘action’ block. which is labelled ‘get
character in A'. This describes what we want to do - get the code
number for a character in the accumulator. We don’t know how
we're going to do this at present - that comes later. After getting the
character, the arrow points to the next action, storing the byte in

GET CHARACTER
INA

Y

STOREITIN
'SCREEN MEMORY|

END

Fig. 6.2. A flowchart for the 'print-a-character’ program.

64 /ntroducing Dragon Machine Code

screen memory. That’s how we carry out thc ‘print’ part of the
action, and it's something that we've looked at earlier. The END
terminator then reminds us that this is the end of this piece of
program, it’s not an endless loop.

This is a very simple flowchart, but itis enough toillustrate what [
mean. Note that the descriptions are fairly general ones - you don’t
ever put assembly language instructions inside the boxes of your
flowchart. Strictly speaking, I should not have referred to the
accumulator A in the ‘get character’ box, but my excuse is that I need
to be reminded of where the code is to be stored. A flowchart should
be written so that it will show anyone who looks at it what is going
on. It should never be something that only the designer of the
program can understand and use, and just confuses anyone else. A
good flowchart, in fact, is onc that could be used by any programmer
to write a program in any variety of machine code - or in any other
computer ‘language’, such as BASIC, FORTH, PASCAL and so
on. A lot of flowcharts, alas, are constructed after the program has
been written (usually by lots of trial and error) in the hope that they
will make the action clearer. They don’t, and you wouldn’t do that,
would you?

Once you have a flowchart, you can check that it will do what you
want by going over it very carefully. In the example, the actions of
‘get character’ and ‘store in screen memory’ are going to be done
using machine code, so we'll concentrate on them. Getting the
ASCII code for a character looks tricky at first. A lot of computers,
however, put the ASCII code for the last character that was used
into an address in memory. This is where a good knowledge of the
way that the Dragon uses itsmemory comes in handy! As it happens,
if you have my book The Dragon32 And How to Make The Most Of
/1. you will find some of these addresses in it, and Appendix F also
shows some, a longer list in this case. One is of particular interest, the
address $0987. This is the address at which the Dragon stores a code
number for the last key that was pressed. If we load the accumulator
from this address we may, as the advertisements say, learn
something to our advantage. The first step, then, looks like loading
the accumulator, using extended addressing, so that we can make
use of address $9P87. Wait, though - why should we use extended
addressing for anaddress that starts with @ @? Any address that starts
with @@ is a zero-page address, so we could use the shorter and
quicker method of zero-page addressing. Now we're beginning to
think like machine code programmers! In doing so, however. we
may have dug a trap for ourselves. The direct page addressing of the

Taking a Bigger Byte 65

Dragon uses the number stored in the DP register as the high byte of
any address that uses DP addressing. If the DP register of the
Dragon happens to be set to §@. we can use this type of addressing. If
it isn’t. we'll have to use extended addressing. Right now, we can’t
tell what the Dragon designer did - so we’ll have to try it and see!

The second step. of storing the byte in the screen memory, is
straightforward. The memory that we shall use is the ‘text memory’
which is in the range of $0400 to SpSFF. How about a spot right in
the centre of the screen. at SP510? You want to know how I got to
that number? Well. if we take the range $0400 to $OSFF. that’s
$0209 addresses. including the first and the last. Half of that is
SO109. so if we add $P100 to SP400. we get $050 @, which must be
the first address in the middle line on the screen. There are $20
characters per line (all right. 32 if you're still in denary). so $19 isthe
centre of that line. Adding these gives us the $¢51 ¢ address. A ‘store
accumulator to $0510° should therefore get us where we want

Now we can design the assembly language part of the code. We
can follow the path we have trod before. and start the code at
address 32701 (denary). This makes our assembly language code
look like this:

ORG 32701
LDA $87
STA $0519
RTS

We canthen put thisintothe form ofa BASIC program which pokes
the codesinto memory. and thencalls the machine code program. It
will look as Fig.6.3,s0 wecanenteritandrunit. Another small step
for a Dragon user!

10 CLEARS@,32700; A=3270Q

20 FOR N=1 TO &6

3@ READ D%:POKE A+N,VAL ("&H"+D$)

4@ NEXT:EXEC 32701

50 DATA 96,87 ,R7,05,10,39

Fig. 6.3. The BASIC poke program for printing a character.

Well. it works, but not as we might expect. When the program
runs, an inverse-video @ sign appears in the middle of the screen.
The problem is - where did this come from? Unless you know about
the workings of the Dragon, it's not exactly easy to explain. Light
comes streaming in, however, when you take a look at the tables in
Fig. 6.4. These show how the Dragon responds to code numbers that

66 Introducing Dragon Machine Code

Character POKE CHR$
Dec. He Dec. Hes: .
e oo aa = -
A o o 97 61
B o2 a2 98 62
& ex ax 99 63
o 4 LX) 100 64
E as a5 101 65
F a6 a6 102 66
[a7 a7 103 67
H @8] 104 68
1 [a9 105 69
J 1e an 106 6A
¥ 11 oB 107 6B
L 12 ac 108 6C
M 13 ap 109 6D
N 14 3 110 6E
o 15 oF 111 6F
P 16 10 112 70
-} 17 11 113 71
R 18 12 114 72
s 19 1z 115 73
¥ 20 14 116 74
u 21 15 117 75
v 22 16 118 76
W 23 17 119 77
X 24 18 120 78
¥ 25 19 121 79
z 26 1A 122 78
r 27 1R 123 7R
y 28 1c 124 7C
1 29 1D 125 7D
sa 1€ 126 7€
31 1F 127 7F
32 20 No
! b 21 CHR$
" 34 22 equi val ente
" 35 23
36 24
3 37 25
& 38 26
. 39 27
0 a0 28
) a1 29
- 42 2a
- 43 2B
” a4 2c
- a5 2D
i a6 2E
’ 47 2F
@ a8 3a
1 a9 E3
2 sa 32
ES 51 33
4 52 34
5 s3 35
& 54 36

Taking a Bigger Byte 67

Character POKE CHRS
Dec. Hes vec. Ao .
7 55 37
8 56 38
9 57 x9
: 58 3A
' 59 3B
sa 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 aa 64 49 Upper
A 65 a1 65 41 case
B 66 a2 66 a2
c 67 a3 67 a3
D 68 a4 68 a4
€ 69 as 69 45
F 7@ a6 7@ a6
] 71 47 71 a7
H 72 a8 72 48
I 73 49 73 49
J 74 an 74 an
[75 4B 75 4B
L 76 ac 76 ac
M 77 ap 77 4D
N 78 aE 78 aE
o 79 aF 79 aF
P 8e s@ ge se
o 81 s1 81 51
R 82 52 a2 52
g 83 53 a3 S3
T 84 54 84 54
u 85 55 85 55
v 86 56 86 56
W 87 57 87 57
* 88 58 88 58
¥ 89 59 89 59
z 9@ sA 9@ 5A
3 91 EL 91 S5B
. 92 sc 92 sC
1 9z 5D 93 5D
94 SE 94 SE
‘ 95 5F 95 SF
96 sa 32 2@
97 61 33 21
" 98 62 34 22
. 99 63 35 23
* 100 64 36 24
x 101 65 37 25
N 102 66 38 26
1 103 67 39 27
[104 68 aa 28
[l 105 69 41 29
. 106 6A a2 2A
+ 107 68 43 28
. 108 oC a4 2c
- 109 6D 45 2D
5 1@ 6E a6 2E
’ 111 &F a7 2F
@ 112 7@ a8 3@
1 113 71 49 31

Fig.6.4.(comd.)

68 /ntroducing Dragon Machine Code

Character POKE CHRS

Dec. Hesss Dec.

r 114 72 S

E 115 73 s1

a 116 74 52

% 117 75 53

& 118 76 54

¥ 119 77 55

8 12e 78 S6

L 121 79 s7

3 122 74 S8
123 7n s9
124 7€ 60

= 125 7D 61

> 126 7E 62

2 127 7F 63

Fig. 6.4. The characters of Dragon, and the POKE and CHR$ numbers which
produce them

are put into it in different ways. One column shows the result of
using CHRS in BASIC to placea numberinto character form. The
other column shows what you get when you use POKE or its
machine code equivalent. which is storing the accumulator to the
screen memory. The inverse (or lower case) @ hasa POKE codeof
§. When we get an inverse @ on the screen from this program.then,
it must be because thenumberthat was in the accumulator was zero.
That makes sense. because we hadn’t pressed any key when the
program ran. This program is the equivalent of using KS=INKEY$
without putting the instruction in a loop. What we have to dois to
loop around until the number is no longer zero.

Don’t rush - we have to check this. Try this one-liner in BASIC:

109 K=PEEK(&H87):IF K=0 THEN 199 ELSE PRINT K

Now when we runthis one the program hangs up, waiting for us. and
when we press a letter key, we see the ASCII code for the letter
appear on the screen. That confirms what we suspected - the address
$87 will hold zero until a key is pressed, and to make it work the way
we want. we need to loop around until the address no longer stores a
zero.

Now in our present state of knowledge, we could do the looping in
BASIC, and call the machine code program as soon as the BASIC
had detected a key being pressed. Ratherthan wastetimeoverthis,
though, let’s try the complete machine code approach, even at the
risk of making some mistakes on the way.

Loop back in hope

Since thisis a simple program. itlookslike a good opportunity to get

Taking a Bigger Byte 69

an introduction tolooping. If you have doneanything more thanthe
most elementary BASIC programming, you will know what a loop
involves. A loop exists when a piece of program can be repeated over
and over again until some test succeeds. In BASIC. you can cause a
toop to happen by using a line which might read. for example:

200 1F A=) THEN GOTO 109

This contains a test (is A=0"). and if the test succeeds (yes. A is §).
then the prograni goesback to line Q@) and repeatsallthestepsfrom
there to line 20f) again. Thatsort of loop in BASIC corresponds very
closely to how we createa loop in machine code. Instead of using line
numbers, however. we are using address numbers. Instead of testing
avariable called ‘A’ we shall test the contents of a register. whichin
this case can be the ‘A’ register.

Let’s start the proper way with a flowchart. Figure 6.5shows how

GET
CHARACTER
INA

YES

NO

STOREIT AT
$0510

Fig. 6.5. Another flowchart - this one has a loop which rejects the zero
character.

this might look. The first step is the same - get the character code in
the accumulator A. The nextstep.however. is a‘decision’step. The
decision is: ‘is it §”” All decision steps in flowcharts must be worded
so that there can only be two possible answers. yes or no. This is
indicated by having two arrowed paths from the decision step. One
of these is labelled “YES'. It leads back to the first step of the

70 Introducing Dragon Machine Code

program. the step that requires the memory to be loaded to the
accumulator, Why? Because if we find that we have a zero in the
accumulator it means that there’s no key pressed. and we have to go
back and try again. The other path. the one that is labelled ‘NO’
leads to the next action step. storing the accumulator byte in the
screen memory.

The action. then. will be that the accumulator is loaded from
address $0087. and the byte in the accumulator is tested toseeif it is
zero. If it is. we repeat the loading. If it isn’t (which means that a key
was pressed). then we store the byte in the screen memory. Now we
have to put this into assembly language form and that’s going to
introduce some new items to you.

LOOP: LDA §87 ; load accumulator from address
pp87
BEQ LOOP ; go back if the byte is §
STA $051p ; otherwise store it at address
40519
RTS ; back to BASIC

Fig. 66. The assembly language program corresponding to the flowchart.

Figure 6.6 shows an assembly language program which should
carry out the effect of the flowchart. There’s one more step in this
{lowchart, and one alteration to an existing step. The newstep is the
‘BEQ LLOOP’, and the change is to the first step. which now has
LOOP: stuck in front of it. This word L.LOOP is a label. It's being
used here in place of an address. and it means the address at which
the instruction starts. With [LOOP: placed in front of the LDA $87
instruction, the word loop means the address at which the LDA
instruction byte is stored. By using words in this way, we avoid
having to think about address numbers until we actually write the
machine code. If we use an assembler, we usually don’t have to
worry about address numbers at all - the assembler automatically
puts in address numbers in place of label words. The same label
word is also used in the next step. BEQ means ‘branch if the register
is equal to zero'. so the effect of BEQ LOOP is that the program
should go back to the address of the LDA instruction if the
accumulator contains zero. It’s rather like using a version of BASIC
which allowed variables to be used in place of line numbers (assome
do).

In assembly language. this all looks quite neat and straightforward.
If we were using an assembler it would be straightforward. but when
we assemble by hand. it's not so simple. The reason is that we have to

Taking a Bigger Byte 71

Destination - address you want to jump to (which has label in
front of assembly instruction)
Source - address you want to jump from (address of branch
code - in assembly language; it is the instruction
with the label name after it

Displacement is Destination minus Source minus 2 put into hex form.

Checking: Forward displacement __Codes Caleulntion
Address
32788 - 32793 - 2 = 3
32791 LDA #5096 86 6 Check
32793 BRA STAKT 28 83 e—— displacement 93 - jump over
32795 LOX #57FEY 8E 7F F9 3 bytes to Al
32788 START: STA 1,X A7 P1
Backward displacement Calculation
KD - TFFS = -5
TFR LOGP: LBA $7FO4 6 7F P8 -5=-2= (2]
7FF3 oA #$93 81 p3
FF5 BEQ LOSP 27 F9 Checking

Start counting at the KY
byce, and count up for each
byte to $B6. You should reach
FF when you get to $Bob.
Fig. 6 7. The formuia for finding the size of a displacement byte
follow the BEQ instruction by a single byte which will give the
address of the LDA instruction. This is PC-relative addressing. so
that we have to use a signed byte that can be added to the address in
the program counter to give the address of the LDA step. The
formula is shown in Fig. 6.7. What you have to do is to find the
address that you want to jump to, and the address of the branch
command. Subtract these. then subtract 2 from the result. What you
have now is the size of the ‘displacement’ byte that you need to
follow the branch instruction. Since this number is negative. we have
to convert it to the form of a signed byte. using the procedure that we
looked at earlier.

If all that sounds complicated. take alook at it in practice, in Fig.
6.8. Assuming that we are going to place the first byte of the program
ataddress 3279 [then the address of the BEQ instruction isat 327¢3.
32703 is the source address. where we're coming from. and 32791 is

address Code

Destisation B 9 I. Destinatien - seutce = 32791 = 3703
w2 87 augress agdress
Sourew 293 21 ==k
32794 this is where
displacement 2. Subtract 2 tram this to get =4
byte fits

3. 256 - 4 = 252 (negative form in aenary)

. 252 denary = $5C and this is the
displacement byte

Fig 68. An example of finding a displacement byte.

72 Introducing Dragon Machine Code

the destination address. where we’re going to. Subtract source from
destination numbers, and we get —2. Subtract another 2 from this.
and we get —4. —4in hex is FC, so that’s thedisplacement byte that is
placed following the BEQ instruction code.

Now don’t rush and try this - because it won’t work! It’s not all
that easy to see why it won’t work because, once more,itdepends on
knowing how the Dragon works. If you have, in fact, figured it out,
award yourself a gold star. What is happening is that our program
loops round forever. It should loop untila number code is put into
address $0987, and a code should be put into thataddress by the act
of pressing a key. Why doesnt it work? Because if the
microprocessor of your Dragon is spending all its time looping
round your program, it can’t be scanning the keyboard looking fora
key to be pressed! There’s only one microprocessor in the Dragon,
and it has to do everything. As it happens, it doesn’t have to keep the
screen display going - if it did, you would see the screen picture
disappear when you ran this program. Instead, you get - nothing.
You’ll have to use the reset button at the side of Dragon to get out of
the loop.

How do we get round this? What we have to do is to write a piece
of program that will attend to reading the keyboard. and place that
piece of program in our loop. That's possible, but it takes a lot of

START

TAKE BYTE
FR

oM
KEYBOARD

STORE IN
SCREEN
MEMORY

Fig. 6.9. A flowchart for a character printing program.

Taking a Bigger Byte 73

time, and needs a lot of knowledge of the Dragon. It also seems a
trifle unnecessary, because there must be a routine in the ROM of
the Dragon which will do all this for us. There is - and Appendix F
lists the address for this and other useful routines. The routine which
starts at address $8006 will scan the keyboard looking for a key
being pressed. If no key is pressed, the number in the accumulator
will be zero. If a key is pressed. the number in the accumulator will
be the number code for that key. Using this routine, wedon’t have to
make use of any memory address like $0087.

The next step, then. is to see how this routine at $8006 can be
used. Theinstructionthat we need is called * jumptosubroutine’,and
it’s abbreviated to JSR. Each subroutine in the ROM ends with the
RTS code. which returns it to whatever program called it, so if we
use JSR followed by the address $8006, then the subroutine will run
and then return to our own program. Figure 6.9 shows a flowchart
for what we are going to attempt now. We shall call up the
subroutine to get the byte into the accumulator, then test it. If the
byte is zero. we shall return to the ‘scan keyboard step; if not, we
shall store it in screen memory. So far. so good. Figure 6.10 shows

LOOP: JSR $80P6 ; keyboard subroutine

BEQ LOOP ; back if zero
STA $05S1f ; store to screen
RTS ; back to BASIC

Fig. 6.10. The assembly language version of the program.

the assembly language version of this flowchart, with the label word
LOOP once more used to indicate the address to which the program
is to return if the byte in the accumulatoris zero. Figure 6.11 shows
the program put into the form of a set of BASIC poke instructions.
When this runs. pressing a key will cause a letter or other character
to appear on the screen. Not all keys will produce a result (find out
which ones don’t), and some keys produce unexpected effects. Try
the number keys, for example, and also try the effect of pressing the
SHIFT keyalongwith otherkeys. It works - and this is themachine
code equivalent of the INKEYS instruction of BASIC. We've

1@ CLEARSQ, 32700: A=32700

2@ FOR N=1T09: READ D$

3@ POKE A+N,VAL ("&H"+D$) : NEXT

4@ EXEC 32701

S@ DATA BD, 80,06, 27, FB, B7,@5,10, 39

Fig 6.11. The BASIC poke program.

74 Introducing Dragon Machine Code

broken a lot of new ground in this short piece of program, so
perhaps this is a good time to go over it all carefully and make sure
that you know what it has all been about before we plunge deeper
into the business

More loops

The loop that we have tried out wasa simpleloop thatis classified as
a ‘holding loop’. Its job was to keep a piece of program repeating
until something happened. It's time now to take a look at another
type of loop, called a ‘counting loop’. The importance of this one is
twofold - it’s the way that weprogramatimedelayinmachinecode,
and it also gives me an excellent opportunity to demonstrate just
how fast machine code can be.

The type of loop that you use mostin BASICis the FOR...NEXT
loop. This uses a ‘counter’ variable to keep a score of how many
times youhaveusedtheloop,andcompares the value ofthe counter
with the limit number that you have set each time the loop returns.
Now the action of a FOR...NEXT loop can be simulated in BASIC
without using FOR or NEXT, and the method is shownin Fig. 6.12.

10 C=oe:ND=10

2@ PRINT"ACTION ";C
3@ C=C+1

4@ IF C<=ND THEN 2@
5@ PRINT"”FINISHED"

Fig. 6.12. A simple loop in BASIC

The count number is C, and its limit is ND. At the end of the
program, the value of C willbe 11, just like the value of the counter
ina FOR N=1 TO 1§ type of loop. The next thing, then, is to take a
look at the flowchart for this type of program, and that's shown in
Fig. 6.13.

This method of forming a counting loop is the one that we use in
machine code. We can write some assembly language that will do the
same job - but, as usual, we have to give a lot more thought to how
the task will be done. For one thing, we don’t have variable namesin
machine code. We have todecide where weshallstorea number,and
in what register we shall carry out the task of decrementing it. The
decision step is easier - we can use a BNE test this time to keep the
program looping back until the content of the register that we have
tested is zero. In case you're wondering how we specify which

Taking a Bigger Byte 75

(b)

(@)

SET SET
COUNT COUNT
START START

SET

END

DECREASE
COUNT
BY 1

INCREASE
COUNT BY
1

Fig 6.13. Flowcharts for foops: (a) incrementing the count number. (b}
decrementing the count number, which is simpler.
register we're testing, the answer is thatit’s always the onethat we
used just before the BNE (orany other) test.

Figure 6.14(a) shows what we end up with as an assembly
language program. The accumulator is loaded with $FF, which is
255 in denary. This is the largest number that we can load into an
eight-bit register. Having loaded the accumulator, we then
decrement it, and mark this address as‘LOOP’, the place we want to

LDA H#$FF ; §FF into 'A' register
LOOP: DECA ; decrement it
BNE LOOP ; back if it has not reached §
(@ RTS ; back to BASIC

return to if the register content is not zero. The test is carried out by
BNE, branch if not equal to zero, because we want the program to
repeat the decrementingactionuntil the contents of the accumulator
reachzero. The BASIC program which pokes the bytes into memory
and then carries out the program is shown in Fig. 6.14(b). This time

76 Introducing Dragon Machine Code

10 CLEARS@, 32700

20 FOR N=1 TO &6

3@ READ D$

4@ POKE&H7FBC+N, VAL {("$H"+D%)

S50 NEXT

6@ PRINT"START":; EXEC&H7FBD: PRINT"STOP"
(b) 1@@ DATABG,FF,4A,26,FD,39

Fig. 6.14. {a) A counting loop in assembly language, (b) BASIC poke program

we've used the POKE address in its hex form, and we’'lido thisfrom
now on. Now when you run this one, you will not see much of a time
delay between the printing of 'START and the printing of ‘STOP".
This isn’t because nothing has happened. it is because the machine
code countdown is so fast! If you try a BASIC version of this:

19 A=255:"START"
20 A=A-1

39 IF A<>) THEN 2
49 7STOP”

you will see that there is a noticeable pause. Thedilferencedoes not
reflect the comparative speeds. however, because quite a lot of time
is spent in the printing actions. To see just how great the advantage
ol machine code can be in terms of speed, we need to work with
much larger numbers. Now there are several ways of doing this. but
one which we can look at right now involves two loops.

You have probably met nested loops in BASIC. The principle is
that there is an inner loop and an outer loop. On each pass of the
outer loop, the whole of the inner loop is carried out. This allows us
to create much longer time delays, by doing one count inside
another. Suppose we have, in BASIC, the lines:

19B=190:>*START"
20 B=B-1

3p A=255

4 A=A-1

59 IF A<>) THEN 49
60 IF B<>) THEN 29
792*STOP™

then these would carry out a countdown of A from 255 to @ each
time the value of B was decremented. Try this one - and time it. You
won't need a stop-watch - anything with a minute hand will do!
Fora contrast, let’s see how the same numberscould be dealt with
in a machine code countdown. Figure 6.15(a) shows the assembly

Taking a Bigger Byte 77

. B loaded with 1pP (denary)

LDB ﬁIsa

3
LOOP 1: LDA #$FF ; A loaded with 255 (denary)
LOOP 2: DECA ;A=Aa-1

BNE LOOP 2 ; decrement A if not zero
DECB ; now decrement B
BNE LOOP 1| ; back for another one

(a) RTS ; finished

1@ CLEARSe@,3270@

2@ FOR N=1TO0O11

3@ READ D%

4@ POKEXH7FBC+N,VAL ("&H"+D%)

S@ NEXT

6@ PRINT"START":EXEC&H7FBD: PRINT"STOP"

1e@ DATA Cé, 64,86,FF,4A,26,FD,5A,26,F8,3
) 9
Fig 6.15. (a) Assembly language for a two-loop counter, (b) the BASIC poke
program.

language version. The B register is loaded with SFF, and the A
register with $64 (199 denary). This second instruction is labelled
‘[LOOPI". Then comes DEC A so that the A register is decremented,
and this is labelled ‘LOOP2". The BNE test then returns to this
LLOOP2 point until the A register has reached @. After that, the B
register is decremented. and then tested. Note that the order is not
quite the same as in the BASIC version. In a machine code
decrement and test action. you must have the decrement done just
before the test. otherwise the register that is tested may not be the
correct one. If the B register has not reached zero, the program loops
back, this time to LOOP I. to fill up the A registeragainand perform
the ‘inner loop’ yet again.

When you try this - it’s still almost too fast to follow! It’s a good
illustration of the speed advantage of machine code as compared to
BASIC. If you are not guite convinced that the count has been
carried out, then alter the number in the outer count from $64 to
$FF (replace 64 by FF in the data line 19§ of the BASIC program).
This makes the delay slightly more noticeable.

Using two registers in this way is slightly clumsy, however, and it
would make more sense if we could use a sixteen-bit register that we
could load with SFFFF. As it happens, we can, but we can’t use the
DEC command with sixteen-bit registers! This might just be a good
excuse to introduce some more advanced addressing as we lookata
way of decrementing a sixteen-bit register.

As it happens, the A and B registers can be combined into a ‘D’

78 Introducing Dragon Machine Code

register, but there is no simple way of decrementing this either. We’ll
use the index register, X, then. As it happens, we can load any
register from the X register, using indexed addressing, and we can
specify an amount added to the number in the X register. We could
specify, for example, that we will load the Y register from the X
register, first subtracting I (adding —!) from whatever is in the X
register. That’s one possibility - but there’s another. This is to load
the X register from the X register(yes, from itself!), but subtracting |
in the process. It's just the machine code equivalent of the BASIC
decrement action:
X=X-1

The command that we need for thistype of actionis LEA - load
effective address. This is just one of the commands which can be
operated by indexed addressing. What makes it different from an

ordinary load is that it loads the contents of an address number
rather than the number. When we specify the action:

LEAX —1,X

what we want is to take the number fromthe X register,add —I to it,
and then put it into the X register. [t may seema long-winded way of
decrementing, but it works! There's another complication. When
you look up the code for LEAX, you find that you need to follow it
with another byte that will specify the other two parts of the
instruction. One of these is that you want to add —1, the other is that
you want to take the number from the X register so that youcanadd
—1. All indexed addressed instructions need this second byte (called
a post-byte, which sounds like the action of a dog on postmen).
Figure 6.16 shows how these bytes are arrived at. There are a lot of
possibilities, because there are several registers, and a lot of numbers
that you could add or subtract. In this table, I've shown only the
post-bytes that apply to loading from the X and Y registers with
increment and decrement. The other variations come about because

Main code Post byte

increment X LEAX 1,X 39 91
decrement X LEAX -1,X 30 1F
increment Y LEAY 1,Y 31 02
decrewent Y LEAY -1,Y $31 $3F

Fig 6.16. How double-byte registers can be incremented and decremented by
means of the LEA instruction.

Taking a Bigger Byte 79

you can choose numbers of different sizes (zero. five-bit, eight-bit or
sixteen-bit) to add to the number taken from the register.

LDX #$FFFF ; maximum numbers into X
LOOP: LEAX -1,X decrement X

BNE LOOP back if not zero
(a) RTS finished
1@ CLEARS@, 3270@@
20 FOR N=1T0B
3@ READ D%
4@ POKEYH7FRC+N, VAL ("¢H"+D%$)
5@ NEXT

60 PRINT"START": EXECX¥H7FBD:PRINT"STOP"
(b) 1@@ DATASE,FF,FF,3@,1F,26,FC,39

Fig 6.17. (a) Assembliy language for a countdown from $FFFF, (b) the BASIC
program to poke the bytes into memory

Let’s get back to the example. In the assembly language version,
Fig. 6.17(a), the first step is to load the X register withthe maximum
size of number, SFFFF (65535 in denary). The loop starts with the
indexed load. LEAX —1,X, and the usual BNE test checks to see if
the result is zero. If it’s not, then the program returnstothe indexed
load step. This continues until the X register isdecrementedto zero.
Once again, the time delay is noticeable - but try for yourself the
BASIC equivalent, which would be:

10 X=65536:"“START"
20X=X~1

30 IF X<>p THEN 20
497“STOP”

The result of running this should convince you of the speed
advantages of machine code!

Chapter Seven
Ins and Outs and
Roundabouts

Video loops

Of all the loop programs that we canmake use of in machine code,
loops that involve the video display addresses are among the most
useful. We have seen earlier that we can make things happen on the
video display by making use of POKE commands from BASIC. The
techniques that you used for POKE displays on the screen can also

START

LOADIN
CHARACTER

PUTINTO
SCREEN
ADDRESS

i

INCREMENT
SCREEN
ADDRESS

Fig. 7.1. A flowchart for filling the screen with a character.

Ins and Outs and Roundabouts 81

be used for machine code, and the main differences are that machine
code is faster and involves more work on your part!

Take a look, for starters, at Fig. 7.1. This shows theflowchart for
a program that will fill the text screen with onecharacter. Theidea is
that weload a register (the accumulator is usually thebest bet) with a
code number for a character, and we store this at the first screen
address, which is $40@. We then increment this address, compare it
with the last screen address (it should be $§SFF, but we've gone one
beyond to $p600 for reasons we'llexplain later) and jump back if we
haven’t got to the last address. The jump back is to the store
command, so the character gets stored at the next screen address,
and so on. When we come to put thisinto assembly language. we’ll
use an indexed store command, with the automatic incrementing
feature. This is why we need to use $06Q@ rather than $5SFF forthe
last screen address. If we compare the address after the increment
action, storing the last character will take place when the address is
$OSFF. This will thenincrement to $¢600, and that’s when we carry
out the compare operation. Watch for points like this, because they

LDA #$2A ; $2A into accumulator
LDX #$P4PP ; first screen address
LOOP: STA §,%t ; store 2A at X address,

then increment X
CMPX H$P6PP ; reached end yet?
BNE LOOP ; back if not
(a) RTS ; all done

10 CLEARS9, 32700

20 FOR N=1 TO 1X:READD$

2@ POKE &H7FBC+N,VAL ("&H"+D$%$)

4@ NEXT;EXEC &H7FBRD

1@@ DATA B86.2A,8E,@4,00,A7,80,8C,06.00,2
(b) 6,F7,39

Fig 7.2. (a) The assembly language program, (b) BASIC poke program.

can often account for a puzzling ‘spare piece’ in a pattern.

Let’s get down to the assembly language version, which is shown,
along with the BASIC program, in Fig. 7.2. The first step is
straightforward - load the accumulator with $2A. This is the ASCII
code number that will produce a white-on-black star - obviously,
you could try any other code number that you liked to use. We then

82 /Introducing Dragon Machine Code

load the X register with the start of the screen address. which is S400.
The X register is chosen for this because it's ideal for indexed
storing. The next item is the loop. We start the loop by storing the
byte in the accumulator to the address in the X register, and then
incrementing the X register. In assembly language, it’s written as:

STA 9.X+

with the + following the X to remind you that the incrementing
action is carried out after the store operation is completed. The next
step is to compare this (incremented) address with SP6PQ. the last
number we expect to find. If the numbers are not equal (BNE). then
the program loops, to store the character at another address. When
the last increment action has made the address number in the X-
register equal to $P6P P, then the program breaks out of the loop.
and returns to BASIC.

Transforming this by hand into machine code is reasonably
straightforward. except for the usual ‘post-byte’. This. you
remember. is the byte that we have to put following the indexed
instruction. It signals to the 6809 which index register is being used.
what sort of increment we want, and so on. In this case, the post-byte
is $80. If you used $81. you would increment the X register twice
each time, so that the character was placed only in each second
address. Try it later. and look at the effect.

Once the machine code bytes have been written down (check the
displacement byte that follows the BNE), then the BASIC program
that pokes the bytes into memory can be written down. It shouldn’t
take long — apart from the value of N and the DATA line. it's almost
the same for each program so far. When this runs. there is a short
delay while the slow BASIC pokes the numbers into the memory.
and then the machine code does its stuff in its usual lightning way.

Take a bigger cast-list. ..

We can modify the program of Fig. 7.2 in an interesting way.
Suppose we started with the accumulatorcontaining zero, and we
incremented the accumulator on each pass through the loop. This
would mean that we would produce on the screen each character for
the numbers @ to 255 (denary). What would happen then? Well,
since the accumulator can hold only eight bits, and 255 (denary) is
the largest number it can hold, it simply goes back to) again next
time itisincremented. Figure 7.3 shows the flowchartfor this action.

Ins and Outs and Roundabouts 83

and Fig. 7.4 shows the assembly language and the BASIC poke
program. There’s nothing here that should cause you any head-
scratching, because the only addition is the INCA intheloop. Tryit.
and you'll see the full set of text-mode characters appear - in colour
if you're using a colour TV for display. This is a good example of
how a simple program can be extended so as to do much more than
the original version. It's an important point, because a lot of
machine code programming is of this type. If you keep a note of all
theassembly language programs that you haveever used,along with
what they did. then you’ll find that this library’ is a very precious
asset. Very often. you'll find that any new program that you want to
write can be done by modifying or combining (or both)old routines

SET FIRST
SCREEN
ADDRESS

f

STORE = §
1st CHARACTER

STORE TO
SCREEN

f

INCREMENT
BOTH STORE
AND SCREEN

Fig 7.3. A flowchart for printing the entire character set.

84 Introducing Dragon Machine Code

that you are familiar with. Another big advantage of this is that an
old routine is a trustworthy routine - a split-new one needs a lot of
testing before you can rely on it.

Save it!

At this point, when our programs are getting slightly longer. and
doing more interesting things. it’s time to look at the topic of saving
machine code program on tape. Now you aren’t absolutely obliged
to do this. Our machine code programs have all been, so far, in the
form of a BASIC program that poked numbers into the memory.
You can, obviously. just save this BASIC program, and it will create
the machine code for you whenever you want. There are times.
however, when you need as much of the memory as possible. and
another piece of BASIC program is as welcome asanelephant ina
space capsule. You may also wantto put on cassette a program that
is a mixture of BASIC and machine code, and to make it difficult for
anyone to copy it. Either way, you'll want to make a direct recording
of the bytes that are stored in the memory. The ordinary BASIC
commands of the Dragon can cope with this and, as we'llsee later,
we can also cause a program to be recorded or replayed by machine
code commands.

We'll stick to comparatively straightforward items for the
moment, however. To save a machine code program. you have to
have the bytes of the machine code in the memory. You also have to
know the address of the first byte of the code, and the address of the
last byte of the code. Some machine code programs do not start with
the first byte that is stored (they might store data first, forexample),
50 you also need to know the starting address. This is also called the
‘execution address’. Finally, you need a filename forthe program. If
allofthislookslikealotof bother,letslook at anexample which will
show that it’s not so awkward as you might think.

Suppose we take the program of Fig. 7.4, which writes all the
possible characters to the screen, twice. The program has its first
byte, and its start at address $7FBD, and if you count in hex to the
last byte, you'll find that it’s at $7FCA. Alternatively, if your hex
arithmetic is comingalong reasonably well,youcanfigure that there
are 13 bytes, which is $0D, and $0D added to $7FBD is $7FCA. If
the worst comes to the worst, you could convert all the numbers to
denary, add, and then convert back, or just use the denary numbers.

Ins and Outs and Roundabouts 85

LDX #$040P ; start of screen inte X
LDA #3900 zero to accumulator
LOOP: STA P,X+ ; accumulator byte to screen,
and increment

INCA ; next character
CMPX $P600 ; end of screen?
BNE LOOP ; back if not

(a) RTS ; finished

10 CLEARSO, 32700

20 FOR N=1 TO 14:READD$

3@ POKE &H7FRC+N, VAL ("&H"+D$)

4@ NEXT:EXEC &H7FBD

100 DATA 8E.04, 00, 86, @@, A7, 80, 4C, 8C, 06, @
b e,26,F8,39

Fig 7.4. (a) The assembly language version, (b} the BASIC listing for the
flowchart of Fig. 7.3

You don’t have to make a meal of it. because the Dragon willdo the
conversions for you, and the addition as well!

To save the program. then, you use the command CSAVEM (M
for machine code), and follow it with the filename (in quotes), the
address of the first byte, the address of the last byte and the
executionaddress. You must place commas to separate these items.
For this example, you would need:

CSAVEM"“SCREEN".&H7FBD,&H7FCA,&H7FBD

You must then press the PLAY and RECORD keys of the cassette
recorder, and then press the ENTER key of the Dragon. Recording
is, as you might expect, very rapid. When it’s done. you can rewind
the tape. Note, incidentally, that you must have the bytes in the
memory before you can do this recording step!

Now comes thecrunch. You have to be sure that you actually have
the program on tape, and that you can load it back. This is not so
easy to test, because if youjusttype NEWand press ENTER .all you
do is to wipe the BASIC program. If you switch off, you'll certainly
clear the memory, but you’ll have to start again by clearing memory
space. To test what you have here, the easiest way is to clear the
memory that you have used, and reload the program. Type the
BASIC line:

FORN=&H7FBD TO &H7FFF:POKE N,):NEXT

86 Introducing Dragon Machine Code

and press ENTER. This will clear the memory from &H7FBD on.
To proveit, type EXEC &H7FBD and press ENTER. Thisshould
cause the computer to hang up, and you'll have to rescue it by
pressing the RESET button at the left-hand side. You can then re-
load the program. Type CLOADM“SCREEN™, press the ENTER
key. and press the PLAY key of the recorder. You should see the
usual tape messages (S for scarch, then F for‘found’) appearing.and
when the tape stops, your program is loaded. You can now test it by
typing EXEC&H7FBD. then press ENTER. If yousee the screen fill
withcharactersasitdid before. allis well. You canalso use EXEC by
itself, because the address for starting the program (the execution
address) was recorded on the tape. and it gets transferred to the
EXEC routine automatically. There’s a variation on the CLOADM
command which allows youto loadthe program into a different set
of memory addresses. but that's not something we want to get
involved in at the moment.

It's important to note at this point that CSAVEM and CLOADM
are not just commands which can be used for machine code. They
are commands which save any set of bytes that happens to be stored
in the memory. That includes the ASCII codes for letters. if youare
interested in word processing programs. or the codes in the screen
memory. You can. for example. save a good-looking screen display
on tape, and replay it again to give an instant picture! All that you
need to specify in the CSAVEM command, after the filename. is the
start of the screen memory and the end of the screen memory. You
must putinan‘executionaddress’, and you can make this the start of
screen memory. This can then be recorded in the usual way. When
it’s replayed, the characters that were recorded willre-appear on the
screen. It’s a great way of replaying a long set of instructions, or of
reproducing a pattern that takes a lot of BASIC instructions to
create.

Saving a screen is particularly useful when you are using the high
resolution screens, because if your programs use a lot of graphics
that are animated by ‘page-flicking’, then all of the pages of memory
that you use can be saved in one piece. Since these are notdisplayed
on the screen until you use the SCREEN instruction in BASIC,
anyone using the program can’t see what is being loaded in. This can
be an excellent way of starting a game, or placing a logo on the
screen that identifies you as the author, and so on.

Ins and Outs and Roundatouts 87

Take a message .

After that brief interlude on the subject of saving and reloading
machine code, let’s get back to the programs. We left Fig. 7.4, you
remember. writing characters on the screen. It’s time now that we
looked at ways of puttingsomething more interesting on the screen,
and letters look like a reasonably simple start to this typc of
programming. What do we have to do? Well, to start with, we need
to store some ASCII codes for letters somewhere in the memory; we
can't just use a string variable as we would in BASIC. We will have
to know the address at which the first of the lettersis stored, and how
many letters are stored startingatthisaddress. Afterthat, weshould
be able to work a loop which takes a byte from the ‘text space’ (where
the letter codes are stored) and put it into the screen space (the screen
addresses). We've already used the main type of instruction that we
need for this sort of thing - the auto-incremented load or save. To
work. then!

We start. as always, with a flowchart. It’s not so easy this time.
because we need a different way of ending the loop. We could count
the number of letters that we want to place on the screen, but I want
to look at a different technique this time - using a rerminator. You
are probably familiar with this idea used in BASIC programs. A
‘terminator’ is a byte which the program can recognise as a special
character. one which is not, for example, part of a message. A
convenient terminator for alot of purposes is . so we'll try that. The
difficulty arises because we don’t want this terminator printed on the
screen. Because of the way that the Dragon uses its code numbers,
the number @) actually would give us a printed character - the inverse
@ that we saw earlier. We don’t want this to appear. so we must test
the accumulator between loading the byte from memory and placing
itinto the screen memory. That. as you'll see, makes the loops more
complicated.

The flowchart that we need is shown in Fig. 7.5. What we have to
do is to store two addresses. One of these will be familiar. it will be
partofthe screen memory. Thishas to betheaddressofthefirstbyte
that we will wantto put onthe screen. The otheraddresshasto bea
store address, the start of a string of bytes that will be used to store
ASCII codes, and which will not be used for anything else. We can
clear things up for ourselves by giving these two addresses label
names. I've chosen SCRN for the screen memory, and TXT for
where we’re storing the codes. What we do, then, having allocated
these addresses. is to load a code from TXT, and increment the TXT

88 /Introducing Dragon Machine Code

SET 1st
SCREEN

SET 1st
TEXT

TAKE BYTE
FROM TEXT

——

INCREMENT
TEXT
ADDRESS

IS TEXT
BYTE §2

STORE AT
SCREEN
ADDRESS

i

INCREMENT
SCREEN
ADDRESS

L ¥

END
Fig 7.5. A flowchart for printing a message on the screen

address. We then test the character, to see if it’s our terminator of .
Ifitis, we wanttoleavethe programatonce. Ifit'snot,then we store
this byte at SCRN, increment the SCRN address, and go back for
another character. Now this gives us a flowchart which has two
jumps. One of these is the ‘go back’ part, the other is the part that

Ins and Outs and Roundabouts 89

LDX #20464 ; position on screen

LDY H# $7FE¢ ; address of text
LOOP: LDA @,Y+ ; get character, increment

text

CMPA #$09 ; is it §?

BEQ ouT ; out if it is

STA P, X+ ; store if not zero,
increment screen

BRA LOOP back for another

(a OUT: RTS finished

10 CLEARS®, H7F@@:A$="DRAGON MAGIC'"
20 FORN=@TO12
25 C=ASC(MID$(A$,N+1,1))
26 IF C<64THEN C=C+64
I@ POKEXH7FE@+N, C: NEXT

40 POKEXH7FE@+N, @

41 REM MESSAGE

5@ FORN=1TO18:READ D%

60 POKE&H7F@@+N, VAL ("&H"+D%) : NEXT

61 REM MACHINE CODE

7@ CLS:EXEC&H7F@1

10@ DATABE, 04,64, 10,8E.7F.EQ,Ab, A0, 81,00
(b) ,27,04,A7,80,20,F6,39

Fig. 7.6. (a) The assembly language for the message routine, {b} the BASIC
listing

goestotheend. What isthis going tolook likein assembly language?

The answer appears in Fig. 7.6. It follows the flowchart pretty
exactly. and the parts we particularly need to look at are the BEQ
and the BRA steps. At the BEQ step. the accumulator has been
loaded from the TXT piece of memory. whose starting address is
held in the Y register. BEQ means‘branchif equal to zero’. and the
displacement that follows this instruction byte will take the program
to the RTS instruction, skipping over the steps between the BEQ
and the RTS. If the byte is not zero, however. it is stored at the
SCRN address, using the X register with automatic increment. We
then have to get back for another character. Since this needs a jump,
and one that must always be made at this point, we use the BRA
(branch always) instruction. Take that smirk off your face, Jones
minor.

That explained, we can convert into the form of a BASIC
program, and try it out. We'll place the bytes into memory ina fairly
simple way, by poking them into memory from a string. This is done

90 /ntroducing Dragon Machine Code

inlines 20 to 49. Lines 50 to 70 then deal with the machine code, and
run it. When it runs, you see the message - but not as you might
expect it! The problem lies once again. with the way that Dragon
uses its codes. The code for a space. in ASCII.is 32 (denary),and the
code for the exclamation mark is 33(denary). Now when you use 32
or 33 in a CHRS instruction in BASIC, you get the correct
characters. When characters are poked into the screen memory.
however, Dragon gives inversecharacters for these ones. This is why
you get the black space, and the inverted-video exclamation mark.
Problems, problems!

@ .K.. we're in the problem-solving business here. so let’s solve it.
One way would be to ensure that only upper-case letter codes of 96
(denary) and above are used. You could do this in the BASIC part of
the program by using lines like:

25 C=ASC(MIDS$(AS.N+L.1))
26IF C<64 THEN C=C+64
30 POKE&HTFEQ.C:NEXT

in place of the original line 3(). This solves the problem if youare
making use of BASIC to put the phrase into place.

Another type of problem arises if you are making use of the
variable list table. The program in Fig. 7.6 was rather wasteful in as
much as the data for the text was stored twice — once as the variable
AS, and againin the memory startingat STFEQ. It would make more
sense if we just used the variable list table entry. Getting the address
for this is plain sailing because of the advanced BASIC that the
Dragon uses. The VARPTR(AS) instruction. remember, gives the
address of the first byte of a set which is the variable list table entry
for AS. We can use this to pass these numbers to a machine code
program, and make use of them. Figure 7.7 shows the flowchart. We
shall find the start address for the text bytes. and the number of bytes
(the length byte). We shall then follow the familiar pattern of
loading the accumulator from the text list (the ASCII codes) and
storing it at the screen. Each time round. we shall decrement the byte
that represents the length of the string. When this byte is zero, that’s
an end to it. Figure 7.8 shows the assembly language program and
the BASIC program that prepares the way. In this program, watch
the difference between the two addressing methods for the registers.
The X register is loaded from $7FE2, using extended addressing.
This means that the numbers that are loaded into the X register are
taken from addresses 7FE2 and 7FE3. It doesn’t mean that the
address $7FE2 is loaded into the X register, because that would

Ins and Outs and Roundabouts 91

START = address e f 1st lettero f message
LEN = number of characters in message
SCREEN = address of 1st letter en screen

BEGIN

0

GET START
GET LEN

I

SET SCREEN

L

LOAD FROM
START

Y

INCREMENT
START

)

PUTTO
SCREEN

f

DECREMENT
LEN

END

Fig. 7.7. The flowchart for a message mrogram using VARPTR

92 Introducing Dragon Machine Code

LDX §7FE2 ; get address from 7FE2,
7FE3
LDY 4$0464 ; start of screen
LOOP: LDA §,X+ ; load accumulator with
character, increment

STA 9,Y+ ; put it to screen, increment
DEC #$7FEO ; decrement character count
BNE LOOP ; back if not zero

(a) RTS ; finished

1@ CLEARSO,%H7FQ@0: A$="DRAGON MAGIC'"

2@ FOR J=Q@TO3:POKE &H7FE@+J, PEEK (VARPTR (

As)+T)

3@ NEXT:FORN=1TO17:READ D%

40 POKEXH7F@O+N, VAL ("&H"+D$) : NEXT

5@ CLS:EXEC&H7F@1

1e0@ DATABE,7F,E2,10,8E,04,64,A6,80,A7,A0
b) 7R, 7F, E@, 26,F7, 39

Fig. 7.8. (a) The assembly language, and {b) the BASIC listing for the VARPTR
message.

require immediate loading. The difference is important, because it’s
the address number that is stored in two bytes (in $7FE2and $7FE3)
that we want to be placed in the X register.

The result, once again, is the phrase, with a black square for a
space, and with the inverted video exclamation mark! The reason is
the same - we've put numbers directly into the screen memory, and
the codes that serve perfectly well in a variable, or as CHRS()
characters, give a different effect when used in this way. How do we
sort out this one? The answer, as it so often turns out to be, isthat the
Dragon can take care of it! You see. all of these phrases look fine on
the screen when you carry out a PRINT instruction in BASIC.
There must be a routine, therefore, somewhere in the ROM of the
Dragon, which converts the ASCII codes to the correct values for
printing. If we can find the routine, thenit’s highly likely that we can
use it for our own purposes.

Life is rather short to go wading through the whole ROM of the
Dragon but, fortunately, this is a well-known routine. It starts at
address $B54A, and it ends with a JSR, so we can call it as a
subroutine any time we want it. Perhaps it might do what we want.
The only snag is that this routine carries out the action of printing a
character at the position of the cursor. Now we have deliberately
chosen a place on the screen to print by using the address $0464 up

Ins and Outs and Roundabouts 93

to now. How do we make the cursor move to this position? Once
again, we need to know how Dragon does this. The answer is that
two bytes in ‘zero-page’ memory, at $88 and $89 are usedto keep the
address of the cursor. If we put the address that we want to use in
these places, we should then be able to call up the subroutine, and
print what we want.

LDX §7FE2 ; get address
LDY #§p464 ; screen memory

STY $88 ; direct page PP88, cursor
LOOP: LDA §,X+ ; load from X address,
increment
JSR $BS54A ; PRINT subroutine
DEC £7FED ; length number decremented
BNE LOOP ; back if not zero

(a) RTS finished

1@ CLEARSQ, ¥H7F@0:A$="DRAGON MAGIC!'"

20 FOR J=0T03:POKE &H7FEQ@+J,PEEK (VARPTR(

AS)+D)

3@ NEXT:FORN=1TO21:READ D%

4@ POKEXH7F@@+N, VAL ("&H"+D$) :NEXT

5@ CLS:EXECYH7F@1

10@ DATABE,7F,E2,10,8E,04,64,10,9F,88,A6
(b) ,8@,RBD,BS,4A,7A, 7F,EQ, 26,F6,39

Fig. 7.9. (a) The assembly language. and (b} The BASIC listing for a program
that makes use of the cursor address.

Figure 7.9 shows the result in assembly language and in BASIC
form. Once again, we load the X register from theaddresses $7FE2
and $7FE3. This will have the effect of placing the address of the
startof the textinto the X register. Thescreenaddress that we want
to use is then loaded into the Y register. The third main step,
however, is to store the address in the Y register into addresses
$PP88 and $PP89. Thisisdone by one instruction, whichin assembly
language is written as STY $88. This is a ‘direct page addressed’
instruction, which is shorter than an extended addressing method.
We can use this because the direct page register is set to zero, so that
specifying the number $88 in a direct pageaddressesinstruction will
automatically make use of the address $¢@88. This has the effect of
shifting the cursor to the correct position. We then load the first
character of the message into the A register and call the printing
routine at $BS4A. When this returns, we decrement the character
count in address 7FEQ, test to see if all of the characters have been

94 Introducing Dragon Machine Code

printed, and loop if they have not. When you try this one, you’ll find
that the words are correct, no dark spaces, noinverted video. Looks
like another small step for a Dragon-user! If you're looking for
problems, though, perhaps you might not want to have the cursor
just following the phrase. Could you shift it? After all. if you can
place it at address $0464 at the start of a program, youmight be able
to put it somewhere else at the end. You could try $0609, for
example, or even addresses like $7FFA, which would make the
cursor invisible. If you do tricks like this, though, you have to be
careful that you return the cursor to the text screen when it is needed
in a BASIC program.

Sailing out of the port

When 1 described the action of the computer system in Chapter 1.
the idea of a pors was raised. As farasa computer is concerned, a
port is any chip or collection of chips that carries out the actions of
sending bytes out or taking bytes in. As it happens, the port of the
Dragon is rather a complicated one, and it is organised in a rather
complicated way. For any of you who know something of the
hardware of computer systems, there was an article by Mike James
in Electronics and Computing Monthly for September 1983, which
spilled a lot of the beans as far as this port is concerned. In this
chapter, however, we’ll concern ourselves with one action only —
getting the Dragon to send out a sound signal.

What makes this complicated is that the port which the Dragon
uses for this purpose is also used for other actions (cassette signals),
and we have to ‘configure’ the port. This means set it up so that it can
be used in the way that we want. The ways of doing this aren’t so well
known as some other aspects of Dragon machine code, and I'm
indebted to Mike James, and also to Mr Opyrchal of Compusense
for information on several methods, of which this is one. Another
method is illustrated in Chapter 9

To start with, Fig. 7.10 shows a BASIC poke program. This
performs its setting up operations in lines 1§ to 39, and then pokes
the address &HFF20 in a loop in lines 49 to 7@. This is the port
address, and the setting up operations in the earlier lines have
‘configured’ the port correctly for sound output. What we’re doing,
then, is to place alternately high and low numbers into the port. This
produces sound because circuits on the otherside of the port convert
these alternate high and low numbers into alternate high and low

Ins and Outs and Roundabouts 95

10 POKE&HFF1D, &H34
2@ POKEXHFF1F, &H3S
3@ POKEXHFF23, &HIF
4@ FORN=1T0200

5@ POKE&HFF2@, 128
6@ POKEXHFF20, @

70 NEXT

Fig. 7.10. A BASIC program that pokes to the port to produce sound,

electrical voltages. These voltages are then sent out to the
loudspeaker. and cause the sound. It's a fairly low sound. because
BASIC isslow,and when the poke operationsare performedslowly.
the sound is a low sound. If we could perform these operations
faster, we could obtain higher pitched sounds. The duration of the
sound is given by the number of times we repeat the operationsin the
FOR...NEXT loop. When these pokes have been carried out,
incidentally, you can hear the sound of cassettes being saved!

It's not so easy to carry out all this in assembly language. If we
stick tosetting up the port by using BASIC, wecan producea note in
assembly language by using the routine shown in Fig. 7.11 in

LDX ﬂilﬂﬂﬂ ; length of note number

LOOP: LDA #$80 ; number for port, high

output

BSR DELAY 3 port output

LDA H$09 ; number for port, low
output

BSR DELAY i port output

LEAX -1,X ; decrement X

BNE LOOP + back if not finished

RTS ; finished

H

pitch number
port output

DELAY: LDB #$80
BACK: STA $FF20

DECB ; decrement pitch number
BNE BACK ; back if not zero
RTS ; back to main routine

Fig. 7.17. An assembly ianguage routinefor obtaining soundATheLDA#$¢]¢
could be replaced by CLRA, which is neater and needs only one byte

assembly language form. The important feature of the assembly
language version is that the number must be repeatedly sent to the
port. It's not sufficient to send the number to the portand then have
a time delay. While the time delay is counting down, you need to
keepstoring a number at the port address ineach pass through the

96 /ntroducing Dragon Machine Code

counting loop. In the assembly language program of Fig. 7.11, the
length of the note is determined by the number that is loaded into the
X register at the start of the program. The main loop consists of
loading the accumulator with $89 (high signal), sending this out a
number of times and then loading $¢9 into the accumulator and
sending this out also. The sending out and timing is carried out by
the OUT routine. This loads $8)) into the B register (this number
decides what the pitch of the sound will be), and then loops round. In
the loop, the byte that is in the A accumulator is sent to the port
address of SFF20, and the B register is decremented. This is repeated
until the B register has reached zero. In the main loop, again, the X
register is decremented by means of the LEAX —[,X step, and the
main loop is repeated until this number also has been decremented
to zero. That’s it! Figure 7.12 shows the BASIC poke version of this,

1@ CLEAR10Q, ¥H7F@@: AD=%H7F@e

20 POKEXHFF1D, &H34

3@ POKE&HFF1F, &H3S

4@ POKEXHFF23,&H3F

50 FORN=1TO2S5:READ D$

6@ POKE AD+N,VAL{"&H"+D%)

70 NEXT

8@ EXEC &H7Fo1

1e@ DATA BE, 10,00,86,80,8D,09,86,00,8D,0

5,30, iF,26,F4,39,C6,80,R7,FF,20,5A,26,FA

»39
Fig. 7.12. The listing of the BASIC poke program for sound.

which sounds a note for a fairly long time. The roughness of the
note, like all notes that are created by the SOUND command in
BASIC, is caused by ‘interrupts’. The timer of the Dragon interrupts
the action of the 6809 at intervals of a fiftieth of a second, and this
places a 50 Hz signal over all sound outputs. If the interrupts are
disabled, as they can be in machine code, the sound is very much
better.

Now it would be much easier if we could make use of the ROM
routine for this SOUND effect, but using the ROM routine in the
Dragon is not quite so easy. We can, however, make some use of the
addresses that the Dragon uses for sound. Address $¢P8C is used to
store the byte that determines pitch,and addresses $¢ 88 and $0089
are used tostorethedurationnumbers. Wecould, therefore, load up
the B register in our program from $¢ §8C, and the X register from
$0P88, and make use of these addresses to store whatever numbers
we pleased to obtain a range of sounds. For now, though. this is as
far as we go.

Chapter Eight
Debugging, Checking,
DEMON and DASM

Debugging delights

Now that you have experienced some of the delights of machine
code programming. it seems fair to mention some of the drawbacks.
One of these is debugging. A ‘bug’ is a fault in a program. and
debugging is the process of finding it and eliminating it. It all sounds
rather insecticidal, but it’s nothing like as easy as that!

It's easy to say, I know, but the first part is prevention. Check your
flowchart carefully to make sure that it really describes what you
want to do. When you are satisfied with the flowchart, turn to the
assembly language to make sure thatit will carry out the instructions
of the flowchart. When you are happy with this, then check that the
bytes you intend to poke into memory are the bytes which
correspond to the assembly language instructions. One thing to
watch very carefully is that you have the correct code for the
addressing method that you are using. Another point which is
peculiar to the 6809 is to ensure that you have the correct post-byte
for any instruction that needs one. If you check each stage in the
development of a program in this way, you will eliminate a lot of
bugs before they are up and flying. Don’t feel that you are a failure if
the program still doesn’t run - unless a machine code program is
very simple, there’s a very good chance that there will be a bugin it
somewhere. It happens to all of us - and it's only by experience that
you can get to the stage where the bugs will be few in number and
easy to find.

If you use an assembler, one source of bugs completely
disappears. Human frailty means that the process of converting
assembly language instructions into machine code bytes is error-
prone. That's because it means looking up tables, and anything
which involves looking from one piece of paper to another is highly
likely to introduce mistakes. Ishall briefly describe the action of the

98 Introducing Dragon Machine Code

DASM assembler later in this chapter. At the time of writing, there
were several assemblers available for the Dragon, but DASM has
several advantages. one of which is that it can be obtained in one
cartridge along with a monitor program called DEMON. There's
more on monitors later in this chapter as well! If machine code has
really caught your imagination. and you feel that you want to
branch out into more advanced work than we have space for in this
book. then a good assembler and monitor program is anessential. If.
however, you intend to be just a dabbler. spawning the odd drop of
machine code now and again. then the poke-to-memory methods
that we have used so far will be perfectly adequate. Using these
methods. however, means that there will be bugs lurking in each
corner of the code. The main cause of these bugs is weariness.
Converting an assembly language program into hex bytes. and
writingthemintheform of DATA lines fora BASICpokeprogram
is a tedious job. and all tedious jobs result in mistakes (ever driven a
‘Friday’ car?). Faulty address methods are one common result of
tedium. and simply writing down the wrong code is another. One
very potent source of trouble is with branch displacements. You
may get the number wrong somewhere between subtracting
addresses and converting a number (particularly a negative number)
to hex. Another problem arises when you modify a program. and
add code between a jump instruction and its destination. Having
done that. you then forget to alter the size of the displacement byte!
This is a problem which simply doesn’t arise when an assembler is
used. An incorrect jump will nearly always cause the computer to
lock up. You can oftenrestorecontrol with the RST button. butnot
always. and you will sometimes lose your program (you did record
it, didn’t you?). Another form of incorrect branch is doing the
opposite of what you intended. like using BEQ in place of BNE or
the other way round. Careful thought about what the jump will do
for different sizes of bytes should eliminate this one.

A lot of problems, as I have already said. can be eliminated by
meticulous checking, and it pays to be extra careful about branch
displacements, and about the initial contents of registers. A very
common fault is to make use of registers as if they contained zero at
thestart of the program. Y oucan never be certain of this. It’s safer.
in fact, to assume that each register will contain a value that will
drive the computer bananas if it is used. With all that said. and with
all the effort and goodwill in the world, though, what do you do if
the program still won't run”?

There's no simple answer. It may be that your flowchart doesn’t

Debugging, Checking, DEMON and DASM 99

do what you expect it to do.and ifyoudidn’tdrawa flowchart. then
you have got what youdeserve. It may be that you are trying to make
use of a Dragon ROM routine and it doesn’t operate in the way that
you expect. Until someone publishes a complete listing of the ROM
routines, and the conditions(likewhat hasto beineach register) that
must exist when each is called. we are likely to find that this is a
matter of trial and error. All I can do here is to give you general
guidance on removing the bugs from a program that seems to be
well-constructed but which simply doesn’t work accordingto plan.

The first golden rule is neverto try outanything newin the middle
of a large program. Ideally. your machine code program will be
made up from subroutines on tape, each of which you have
thoroughly tested before you assembled them into a long program.
In real life. this is not so easy, particularly when the subroutines exist
onlyas DATA lines for BASIC poke programs. Asusual, users of an
assembler have the best of it, because they can keep assembly
language instructions stored like BASIC programs, and merge and
edit them as they choose.

The next best thing to keeping a subroutine library on tape is to
have extensive notes about subroutines. In addition to routines of
your own, you can keep notes on routines which you have seen in
magazines. Personal Computer World runs a series called SUBSET
(and Iwishtheywould reprintitasabook!). Thisconsists of several
general-purpose machine code routines each month. Most of these
are for the Z80. but the occasional 6809 routine creeps in. Even if
you don’t use the routines. the way in which they're documented
should give you some ideas about how you should keep a record of
your own routines - I personally would buy the magazine for this
feature alone! If you are going to use a new routine ina program, it
makes sense to try it on its own first so that you can be sure of what
has to be in each register before the routine is called, and what will be
in the registersafterwards. Look at the examples in SUBSET. and
see how well this information is presented.

Planning of this type should eliminate a lot of bugs. but if youare
still faced with a program that doesn’t work. and which you don’t
want to have to pull apart. then you will have to use breakpoints. A
breakpoint, as far as the Dragon operating system is concerned, is
the byte $39. This is the RTS byte, and its effect is to return to
BASIC. When you are back in BASIC. you can examine the
contents of memory by using PEEK instructions. The principle is to
pick a point in the program at which something is putinto memory.
If you place a $39 byte foliowing this, then. when the program runs,

100 /ntroducing Dragon Machine Code

it will return to BASIC immediately after the $39 instruction is
executed. By using a PEEK, you can then check that what has been
loaded into the memory is what you expect. If it isn’t, you should
know where to look for the fault. If all is well at this point, then
substitute the original byte that belongs in place of the $39, and place
the $39 at the next place following a memory store command.

The most awkward fault to find by this or any other method is a
faulty loop. A faulty loop always causes the computer to lock up.
Though the RESET button will usually get you out of trouble, this
will not always be the case. For example, it’s possible for a program
that runs wild to alter one of the bytes that controls the use of the
keyboard, so that you find you can’t use the keys even if you regain
control! The main cause of this sort of thing is a loop back to the
wrong position. For example, if we had a program, part of which
read:

LDB.#SFF
LOOP:DECB
BNE LOOP

we could encounter problems. Suppose that this was assembled by
hand, and we made the branch back to the LDB instruction rather
than to the DECB instruction. This would result in the B register
being kept ‘topped up’, and never decremented to zero, so that the
loop would be endless. A mistake like this is easily spotted in
assembly language, because the position of the labelnameiseasyto
check. Itis very much more difficult to find when you haveonly the
machine code bytes to look at. Asalways,takingcareoverloopsis
theonlyanswer,andthemethod thathasbeen shownin this book of
calculating and checking displacements is a good precaution.

The DEMON monitor

I mentioned monitors briefly earlier on in this chapter. This has
nothing to do with a TV monitor, which is a sort of superior quality
TV display for signals. A monitor in the software senseisa program,
one which checks (or monitors) each action of a machine code
program. A monitor is (or should be!) a machine code program
which can be put into the memory at a set of addresses that you
aren't likely to use for anything else. Once there, a monitor allows
you to display the contents of any section of memory (in hex), alter
the contents of any part of RAM, and inspect or alter the register

Debugging, Checking, DEMON and DASM 101

contents of the 6809. These are the most elementary monitor
actions, and it’s useful if a section of program can be run,
breakpoints inserted, and registers inspected ona working program.
The ideal monitor would be one which could carry outthesteps of a
machine code program one at a time, displaying the register and
memory contents at each step. Such a monitor was available for the
old TRS-80 Mk. L and would be a very welcome item for serious
machine code programmers on other machines. There are rumours,
as we go to press, of such a monitor becoming available for the
Dragon.

Raising the DEMON

The DEMON monitor comes in cartridge form. and I used the
combined monitor/assembler package known as DEMON/DASM.
The Dragonhasto be switched off while the cartridge is inserted, but
once in place, the cartridge can be left in until you haveneed to use
another type of cartridge. Simply placing the cartridge in position
does not cause the monitor to run, you have to call it up by typing
EXECA49154 (then press ENTER). This causes the DEMON menu
to be displayed on the screen (Fig. 8.1).

Now you won’t necessarily want to use all ofthese options - some
of them might never be of particular interest to you. Instead of
dealing with them in order, then. we’ll pick a few that are the most
useful to the beginner in machine code. Of these. the ‘E’ command
(examine memory) is the most important. When you press E (don’t
use ENTER in any of these DEMON commands), the letter E
appears at the bottom left-hand corner of the display where the
cursor is flashing. You should then type the memory address that
you are interested in. This must be typed asafour-digit hex number.
In other words, if you want to see what isin $86, you must type p 986.
You don’t need to use $ or &H to mean hex, and you must not type
any spaces between the E and the address. As you type the last digit,
you will see the screen display a section of memory which includes
the address that you have requested. The column at the left-hand
side contains the starting address for each row of numbers, and there
are eight numbers in each row. Since the numbers arein hex, the last
digit of each address will be either a § or an 8. If, for example, you
chose to look at pPPP, you would see address numbers on the left-
hand side of the screen ofP00, 008, PP 19, PO18,PP28 and so on,
down to PP78. There are sixteen rows of eight numbers displayed,

102 Introducing Dragon Machine Code

Command Meaning

Action

A Alter registers
B Break point
E Examine

F Fill

G Go

1 Jump

M Modify

Register dump

Video page
X Clear
z Return

The cursor appears next to the CC register
display. Typinga byte (two hex characters)
will cause the cursor to move to the next
register. the A register. At each register
position. a byte (or two) can be entered. or
BREAK pressed to move to the next
register. Those values that are typed will be
entered into the 6809 registers when a J or
G command is used.

Type a four-digit hex address. A break
point will be set at this address. When the
program runs, it will stop at this address
and display contents of registers.

Type a four-digit hex address. The screen
will display memory contents starting at
this address (or the nearest loweraddress).

Type two addresses and a data byte.
Memory from first address to second will
be fitted with the data byte.

The program will be run starting at the
address in the PC register.

Type address. The program will be run
starting at that address

Type memory address. The cursor displays
the data bytc which can be changed by
typing two hex numbers. Several sub-
commands available.

Displays contents of 6809 registers.

Type two digits. This shifts text screen to a
new address whose high byte has been
typed: the low byte is §9.

Clear all break points and restore original
bytes at these positions,

Return to BASIC.

Fig. 8 1. The DEMON menu - typical functions of a monitor.

Debugging. Checking, DEMON and DASM 103

which is enough to give you a good view of a chunk of memory. The
numbers that arc stored in the addresses are then shown in these
rows. Suppose. for example, that we look at the row whose starting
number (on the left-hand side) is $9949. The first byte in this row is
the byte which is stored at $§@49. the next byte is the one stored at
$0041 and so on.

While DEMON is displaying contents of memory in this way,
there are four subsidiary commands that can be used. The down-
arrow key will cause the next ‘page’ of information to be displayed,
meaning the next sixteen rows of addresses. The up-arrrow key will
display the previoussixteen rows of addresses. If you aredisplaying
the first set (from $PPPP to $PP7F). then using the up-arrow will
display the other end of memory, the page from SFF8p to SFFFF.
The CLEAR key will cause the display to show either ASCI1I coded
characters or hex codes. When you use the Ecommand. at first, only
hex codes are shown. Pressing CLEAR will cause any codes in the
normal ASCII range to display as characters rather than in hex.
Pressing CLEAR again will restore the normaldisplay of hexcodes
again. This feature can be useful if you suspect that the section of
memory that you are looking at contains messages or names of
commands rather than machine code instructions. The fourth
subcommand makes use of the @ key. and should beused onlyifyou
have a printer connected and switched on. Pressing the @ key in
these circumstances will cause the information on the screen to be
printed on the paper of the printer. If you have no printer connected,
then the program will hang up if you have pressed @. You will have
to press the RESET button to get back in control. then EXEC49154
to get back to DEMON. Pressing the BREAK key will get you back
to the menu of DEMON, and this is true for any command
BREAK always causes a return to the menu.

The next mostimportantinstruction, as far as we are concerned at
the moment, is ‘R’. Pressing the R key causes the register contents of
the 6809 to bedisplayed. Unless themachine has beeninterruptedin
the middle of a program. there won’t be much to look at here, but
when you come to make use of the more advanced features of
DEMON, like the use of breakpoints, it will be very useful. The
contents of all the registers are shown, and normally we’ll be looking
at the contents of the A.B.X and Y registersin particular. You can
press any key to return from this instruction.

In connection with these two instructions, we have the ‘B’
command. ‘B’ means ‘set breakpoint’, and when you type B you
should follow it (no space) with a four-digit hex address. This is the

104 /ntroducing Dragon Machine Code

address at which the break byte will be putin.and whenit has been
entered, DEMON will return to its menu display. This break isnot a
simple return to BASIC, however, but a break to DEMON. What
this means is that when you run your machine code program with
the breakpoint inserted, the program will stop at the breakpoint.
and the screen will show the contents of the registers, as if you had
used the ‘R’ command. This is very often all that you need to spot
where a program has gone wrong. DEMON allows you to set up to
twelve breakpoints. pressing B, then entering the address each time.
When the program stops at a breakpoint, you can inspect the
contents of registers, use E to examine memory, and then allow the
program to continue by pressing*G’. You caneven alter the contents
of the registers before you start the programagain, but this is not the
sort of thing you want to try until you have rather more experience
with machine code. It’s useful, though, if you are checking the action
of a loop. and you want to see what happens when the content of a
register reaches some value like SFF or $09. Instead of going round
the loop dozens of times, you can go round once to check that the
loop is working, and then alter the register contents so as to make the
loop stop - and then check that it does. Altering the 6809 registers is
done using the ‘A’ command of DEMON. Wherever you have used
breakpoints, you should clear them after you have finished
investigating, and the ‘X" key performs this task.

These are very powerful methods of debugging and sorting out a
program, and yet they form only part of the facilities that this very
useful monitor offers. If, for example, you find that your machine
code program is faulty, itcan be mended by DEMON. Using the*M"
key brings up the ‘alter memory’ action. The M key has to be
followed by a four-digit hex address, as usual, and causesa memory
display to appear on the screen, like that of the ‘E’ command. The
difference this time is that there is a flashing cursor over the first digit
of the first byte. Now this allows you to change the byte. All you
have to dois to type the new byte - two hex digits. If you only want
to change the first byte, you still have to type two digits. For
example, if you find 5F displayed, and you want 5A, you must type
SA. Despite what the manualsays, you can'tskip from the ‘5" to the
‘F* and change only the ‘F". If you don’t want tochangea byte, you
can skip to the next one (the next higher address, that is). This is
done by using the right-arrow. You can move to the previous byte by
using the left-arrow. You can move the cursor up or down a line by
using the up- ordown-arrowkeys. The ENTER key will give you the
next ‘page’ (16 lines of addresses), and the CLEAR key will give the

Debugging, Checking. DEMON and DASM 105

previous page. As usual, the BREAK key will return you to the
menu.

Last, but quite certainly not least, the J key in the menu aliows you
to run a machine code program. This is something that you would
want to do when you had made alterat;ons or inserted breakpoints,
or both. Following the J command. you type the start address of the
program as a four-digit hex number. This will run the program, and
if you have set any breakpoint, you will see the usual display of the
register contents. When you have debugged the program to your
satisfaction. you can then press the Z key toreturnto BASIC. One
point, incidentally, is worth making here. When you first use
DEMON after switching on the Dragon, orafterusingthe RESET
button, you call DEMON by using EXEC49154. When you leave
DEMON temporarily to change a BASIC program. you should
return to DEMON by using EXEC49156. This is a ‘warm start’
address, and it should be used when you are returning to DEMON
as distinct from using it for the first time in that session. Using the
49154 address restarts everything, and can make it difficult to switch
between DEMON and BASIC if you use it when you are returning
to DEMON from BASIC.

Using the DASM assembler

At the time this book was being written, there were several assembler
programs for the Dragon. but the DASM assembler was by a long
way the most useful product in my estimation. Even though thisisan
introductory book for readers who may never go as far in machine
code as to use an assembler, a description is necessary. Dispensing
with adescriptionof thisassembler would be like writinga history of
motoringand omitting the names of Rolls and Royce - even though
not many readers would have directexperience of the product. You
don’t need Rolls Royce income levels to enjoy the use of DASM, in
any case.

Any assembler worthy of the name will be written in machine
code. DASM goes one step further by being in cartridge form. This
is a great advantage, because an assembler that has to be loaded
from tape can be a nuisance. The reason is that inevitably when you
are developing a machine code program with an assembler, the
program will run away from you at some stage in testing. When it
does so, it usually manages to corrupt memory (change stored
values), and it will be as likely to corrupt the assembler as anything

106 Introducing Dragon Machine Code

else if the assembler is in RAM. With the assembler in cartridge
ROM, its code is safe, and you can return to it at any time.

All assemblers are different, and it’s likely that my description of
how to proceed with DASM will not suit the action of any other
assembler. The principles, however, are the same, and it’s a matter of
learning a different sequence of commands. The differences between
assemblers are rather like the differences between computers - but if
you know the language. the differences become less important. The
language in this case is 6809 assembly language. What you have to
learn is how you type a program in such a form that the DASM
assembler will deal with, process it into machine code, and store the
code so that you can run the program.

Driving the DASM

Before you can get to grips with DASM. you need to know how it
copes with the problem of assembling your instructions. The
principle is that you write your assembly language program in
numbered lines, just as you would write a BASIC program. This is
not coincidental, because your program can be written even if the
DASM cartridge is not installed! You are simply using the facilities
of the Dragon to write lines of instructions. Provided you don’t call
on the Dragon to run them, youdon't need the DASM present- not
until you assemble the program, that is. Your lines of assembly
language can be saved on tape in exactly the same way as you save
any BASIC program (using CSAVE ratherthan CSAVEM, thatis).
What distinguishes this program from BASIC is that it uses
assembly language. and that it contains directions to the assembler
program.

Now the assembly language is fairly close to the standard that
Motorola, the manufacturers of the 6809, have laid down. It isn’t
exactly identical. For example, some 6809 assembly language
commands call for the use of square brackets, and the Dragon
simply doesn’t provide square brackets. Other differences are
peculiar to the assembler program itself, and have made the
program easier to write and use. We'll look at some of the differences
here, but others are of interest only when you have had much more
experience with machine code. The other way in which this program
will differ from BASIC will be in the instructions to the assembler. It
isn’tenough to provide aset of assembly language instructions. You
must specify in what addresses in memory you want them to be

Debugging, Checking, DEMON and DASM 107

assembled; whether you want to see the assembly language
instructions appear on the screen as assembly takes place; whether
you want to see error messages; whether you want output on paper
(from the printer) or on the screen, and so on. As so often happens,
though, you'll find that a standard set of these instructions will
suffice for practically all of your uses. If you have no printer, for
example, youdon’t need to pay anyattention to the commands that
affect the printer!

We would normally start, then, byclearingspace. Clearing space
means making enough string space for the assembly language, and
enough memory space for the machine code. The ordinary BASIC
instruction CLEAR is used here, because when you RUN a program
that has been designed for the DASM assembler, the first part ofit
runs in BASIC. Ifyou want to leave 19§ bytes forstrings,andallow
all addresses above $7F00 to be used for machine code, then you will
start your program with:

CLEAR 100,&H7Fp9

This allows you the addresses from $7FQ1 to $7FFF for machine
code, and that’s more machine code than you’ll be writing for some
time to come! Once you have cleared memory for your program in
this way, that’s an end to BASIC, and you have to make use of
DASM for the rest of the work. The nextline of your program must,
therefore, start the assembler, and this is done by the line:

EXEC&HCFFA

The address & HCFF A is the start address forthe DASM cartridge.
Each instruction that follows this will therefore be dealt with by
DASM and not by the BASIC ROM of Dragon. Attheend of the
assembly language program you need to use some method of
signalling a returnto BASIC (so that you canalter,record, etc.),and
this is done by making the last line of the assembly language
program the END instruction. This does not have to be the last line
of all, because you can follow it with otherinstructions. These other
instructions, however, will be instructions in BASIC to Dragon, not
instructions in assembly language to DASM. The difference is
important - BASIC can’t make anything of assembly language,and
DASM can’t make anything of BASIC words.

Nowas we go along, we'lllook atrefinementsand useful additions
to the stock of commands, but these are the fundamentals that you
need to havefirmlyinyourgraspinordertostartmakingintelligent
use of DASM. If each program you write starts witha CLEAR, then

108 Introducing Dragon Machine Code

uses EXEC&HCFFA, and ends with END. you are off to a flying
start. Between these limits. you can write your assembler language.
If you use a number with none of the distinguishing symbolsin front
of it (such as $), it will be taken asa denary number. Using $ meansa
hex number, and three other important marks are used. The
exclamation mark, !, is used to put in ASCII code. If you type !A,
then what is inserted is the ASCII code for A, which is 65 or $41.
Another very useful mark is the asterisk. *. When this appears. it is
taken to mean the ‘current address’. Thisis the address of thestart of
the instruction in which the asterisk appears. so the asterisk is a
useful way of indicating an address without actually having to know
whatit is! The asterisk is also used toindicatealine which isacomment,
like the use of REM in BASIC. The other mark that is used
extensively in programs for DASM is the @ sign. This is used to
indicate a label name. Any word which starts with the @ sign will be
used by DASM as a label word. If, for example. you type:

@LOOP LDA#380

then @LOOP is a label for the start of the LDA instruction. We can
then put, later in the program.aninstructionsuch as BEQ @LOOP.

Any assembler also permits what are called ‘assembler directives’,
which are instructions to the assembler program itself. DASM is no
exception, and some of these directives are worth looking at here
because they (or versions of them) are used widely on assemblers for
other microprocessors. We've already looked at END, which
indicates the end of the assembly language. A directive which is
found at the beginning of an assembly language program is ORG,
which gives the address of the first byte of machine code. DASM
doesn’t, in fact, need to use ORG, because it places its code in the
first free space that isreserved by the CLEAR instructionin BASIC.
Nevertheless, ORG is available, and can be useful. If . for example,
you want to assemble code at address $7FF@, then you can type
ORG $7FF @ (watch the space between the command word and the
number - this space is essential). Another useful directive word is
EQU. This, like ORG and END, does not cause any code to be
assembled, but it defines a label. For example, you can type:
@NOTE EQU $8¢. and this will have the effect of making the
assembler insert the number $8¢ everywhere it finds the label word
@NOTE. Addresses can be specified in the same way, so that you
can have @START EQU $7F00 to define the label @START as
$7FPY, or youcan use a linelike @START EQU * to make the label
word contain the address of the place at which the asterisk is placed

Debugging. Checking. DEMON and DASM 109

1§ CLEAR 1pp,&H7FPP

29 EXEC&HCFFA

30 ALL

40 LDX $7FE2

5P LDY #$P464

60 @LOOP LDAP,X+

70 STA P,Y+ : DECH$TFED
89 BNE @LOOP

90 RTS

1P END : EXEC

Fig 8.2. A typical short DASM program, showing howthisassembler is used.

Labels: All label words s start with @. Any number of
characters can be used. but onlythe first five following @.
along with the last character. will be recognised.

Symbols: S hex number follows
! ASCII code for following letter
* current address
@ immediate address
> direct page address

Directives: END end of assembly language (return to BASIC)

EQU defines label

RMB reserves space for data

FCB generates data bytes (bytes follow FCB)

FDB generates address bytes

FCC generates string data

ORG defines start-of-program address

DSP display on monitor (number follows on control
speed)

PRT print on printer

OFF suppresses printing and display

ALL display all instructions

ERR display only errors

FML full display of assembly language and code

FMS shortened version display

PAG set number of lines for display - pressany key to
continue

PPO print first pass — useful to locate sometypes of
errors

Fig. 8.3. A summary of the DASM directives.

110 /Introducing Dragon Machine Code

in the program. Figure 8.2showsa short program in DASM form to
illustrate how the directives are used, and Fig. 8.3 is a summary of
the DASM directives.

This chapter, however, is not intended to give you a full
description of the DASM assembler. What lintend is to give you a
taste of what the use of an assembler can be like. Ifand when you are
ready to use DASM. you will now be able to make sense of the(brief)
instruction manual that comes with it. Even more important, you
will be able to cope with otherassemblers,and even withassemblers
for other microprocessors. if you should ever change your machine.

Chapter Nine
Last Round-Up

One o fthe main problemsin writing a book about machine code for
beginners is knowing where tostop. Volumescouldbe writtenabout
the machine code programming of the Dragon and still leave room
for more, so that any finishing point has to be anarbitrary one. My
aim hasbeentointroduce the subjectandtakeyouto alevelat which
you can start to make progress on your own. At this level, you can
make use of the other books that are available, which treat machine
code at a more advanced level. This chapter is concerned withtying
up loose ends, mentioning a few more instructions, and illustrating
how to make use of some features of the Dragon.

The stack

You can’t get much further in machine code programming without
comingacross the word stack. A stack isa section of memory, and its
special use is to preserve bytes that have been kept in registers.
There’s no special set of memory chipsthat we use asa stack - we can
make use of any part of RAM that is not being used for something
else. What you probably find difficult to understand at the present
time is why we should ever need to use memory in this way.

Let’s take a simple example. Suppose you have a program in
which the X register is being used to hold a starting address of a
number of bytes, and the Y register is being used to hold a starting
address in the screen memory. This should be a familiar situation for
you, because it’s one that we have used extensively in previous
chapters. Suppose, now, in the middle of this program, that we want
to create a time delay by making use of a countdown in the X
register. Whenever we load the count value into the X register, we
shall have replaced the address that was stored there,and if we try to
use the X register again in the rest of the program, we shall have to

112 Introducing Dragon Machine Code

re-load the address into it. Thisis what the stack isfor. By meansofa
two-byte instruction, we can store the contents of one or more
registers in the memory, and by using another similar instruction, we
can get the values back into the correct registers again. The act of
storingthe register(s) on the stack is called ‘pushing’, and recovering
the values is called ‘pulling’. Any one orany group of registers can be
‘pushed on the stack’ and later ‘pulled from the stack’ by use of the
two-byte commands of push and pull.

The 6809, however. has a small complication of two stacks. This
doesn’t mean that you have to use both of them, but it’s another of
the items that makes this such an excellent microprocessor from the
point of view of the experienced programmer. One of the stacks is
called the ‘system stack’, the other is called the ‘user stack’. The idea
is that if you have the 6809 in a computer system, with memory and
ports, as we do in the Dragon, then this will use the ‘system stack’ for
some of the operations of the 6809. These operations are ones that
you don’t have to program for yourself in detail. For example, if the
action of the 6809 is interrupted by an electrical signal from a port
(as it would be when an input arrived) it will carry out a routine
called the ‘interrupt service routine’. This means that it will
automatically place the contents of all its registers on a stack, do
whatever has to be done to deal with the interruption (this means
carrying out a program that has been written for this purpose), and
then return to normal service after recovering all the register
contents from the stack. The stack thatis used forthis purpose is the
‘system stack’. For your own routines, however, you can use the
other stack, the user stack, which is also the stack that the Dragon
uses for its own machine code routines. At this stage in our use of
machine code, we will want to make only very limited use of any
stack, and we would not normally want to shift the address that the
Dragon uses for its stack. To use the user stack at another address,
we would have to load into the U register (the user stack pointer) the
address of the start of the memory that we wanted to use as stack.
Start in this sense means the highest memory address of the memory
that we are going to use. Suppose, for example, that we wanted to
use the top of available memory of the Dragon 32 as userstack. We
would have used CLEAR earlyin the programto makesure thatthis
memory was not used by the system stack. We would then load an
address such as $7FFF into the U register. From then on, we could
use instructions such as PSHU (push on to user stack) and PULU
(pull from user stack) tosave the contents of registers while we made
other use of these registers. The byte that follows the PSHU or

Last Round-Up 113

PULU byte then specifies which registers we want to ‘save’ in this
way. All of the registers can be saved with the exception of the
register we are using asstack pointer. For example, if you are using
the U register for your stack, you can save all the other registers,
including the S register, but not the U register. Figure 9.1 shows the
post-bytes that have to be used to specify which registers are to be
pushed or pulled.

Register Post byte

PC 80
*s/U 49
Y 20
X 19
DP P8
B P4
A 92
cc 01

* 8 or U depending on which is not being used
as a stock. To push/pull more than one
register, add the post bytes. For example,

to push/pull all registers, use post byte of
4§80 + $4D + $20 + 18 + $8 + §4 + $2 + $1 = $FF

Fig. 9.7. How the post-byte for register pushing or pulling is made up.

We'll look later at an example program which makes use of the
stackbut, fornow, we're goingtoreturnto simpler matters. Therest
of this chapter, in fact, will be devoted to examples of simple
programs which will form a basis for developing into really useful
routines for your Dragon. I must emphasise at this stage that you
have now got to the launch-pad asfaras machine code isconcerned.
From now on, what you need is practice, and all the information
that you can lay your hands on. Look closely at every program for
the Dragon that contains machine code, for example. Even if the
machine code is in the form of bytes that are poked into memory,
you can disassemble these by hand and find out what they do. By
doingthis,youcanoftendiscover addresses which will be very useful
to you in your own programs. From now on, everything is
potentially useful to you!

114 Introducing Dragon Machine Code

The KEYCHAR program

I'm going to take you through some steps in the development of a
simple program. What | wanted to do was to make the keys of the
Dragon give me graphics characters instead of letters. Since the
letters use codes of to 127. and graphics use codes of 128 upwards.
the method was simple enough. All that I needed to do was to add
127 ($7F) to the code of a key, then place the new code into screen
memory. Figure 9.2 shows the flowchart that I used to see what was

T O

GET CODE
FORKEY

i

ADD
$7F

¥

SEND NEW
CODETO
SCREEN

L §

Fig. 9.2. A flowchart for the graphics keys program.

needed. Two ROM subroutines are needed. The one I have used at
address $80 06 is to place in the accumulator the code number for a
key that is pressed - and this code will be § if no key is pressed. The
other ROM routine is at $B54A, and this prints a character on the
screen at the cursor position. Now it's possible that later versions of
Dragon will have these routines at different addresses. Their
addresses are, however, stored at other addresses! The address for
the get-character routine is stored at SAPPP and SAPP1, and the
address of the print-character routine is stored at SA 92 and SAPP3.

Now this flowchart is not difficult to put into assembly language
form. From here on, I'll show assembly language programs in the
form that DASM uses, because the programs for this chapter were
developed on DASM. If you're not using DASM. then you only
need to convert the assembly languages of lines 5 onwards into

Last Round-Up 115

(a) GET: JSR $8pP6 ; get code for key
BEQ GET ; back if zero = no key
ADDA #$7F ; add 127 denary
JSR $BS54A ; display result
BRA GET ; back for next one

(b) BD 8D P6

27 FB

8B 7F

BD B5 4A

20 F4
Fig. 9.3 {a) Assembly language, and (b} hex cedes for the graphics keys
pregram.
machine code bytes, and poke these into memory inthe way that you
know by now. Figure 9.3 shows the assemblylanguageand the code
bytes for this program. We start by using the first subroutine for
finding the code of a key. The BEQstepinline 60 thenreturnsto the
subroutine if thc key-code is zero - meaningthat no key is pressed.
We then add $7F to thc number in the accumulator to form a
graphics character, and print this at the cursor position by using the
second subroutine. So that we can create a pattern in this way, we
then branch back to the start again to get another character.

Now this is a very simple routine, but it works very nicely. When
you assemble the bytes into memory. and then use EXEC&H7F I
(just EXEC if you use DASM). you will see the cursor vanish
because we have no cursor subroutine included in this program.
When you press a key, however, you will see a graphics character
appear. This is true for any of the keys, including the left arrow and
the BREAK keys. Very interesting, that! It means that both the
backspace and the BREAK keys give codes when they are pressed.
The program has no way of escape, however, except by pressing the
RESET button at the side of the Dragor.. That’s not really a very
satisfactory state of affairs.

Now this is just the thing that you come across all the time in
machine code programming. How can we improve the program?
One obvious way is to provide a better way of getting back to
BASIC! Suppose we could modify it so that we could return to
BASIC when we pressed the BREAK key. To start with, we need to
know how to find the code for the BREAK key. That doesn’t need
much research, just an INKEYS loop in BASIC, such as:

10 K$S=INKEYS$:IF K$=*" THEN 19
20 2ASC(KS)

116 Introducing Dragon Machine Code

If you run this, and press the BREAK key, you will find the number
3 printed. This is the code for the BREAK key, so if we can change
our machine code program so as to detect this code. we can then
cause a return to BASIC. What we need to do. then. is to include a
CMPA #$03 step immediately following the BEQ @GET step. In
this way, if we havea number in the accumulator whichis notzero. it
will be compared with $¢3. the code for the BREAK key. Next we
need a BEQ step to cause a return to BASIC if this number is indeed
$03. This is performed by BEQ @OUT, and at the end of the
program, beyond the BRA @GET step, we will place the @OUT
label. with the instruction RTS. Figure 9.4 shows the complete

10 CLEAR100Q, *tH7FQ@@
2@ EXECXHCFFA

30 AlLL:FML

4@ *KEYCHAR

5@ @GET JSR %8006
60 BEQ @GET

7@ CMPA #$03

8@ BEQ @ouT

9@ ADDA #$7F

10@ JSR $854A

11@ BRA @GET

12@¢ @OUT RTS

130 END @GET

Fig. 94. The graphics keys program written for the DASM assembler

program. Figure 9.5 shows the printout from the DASM assembly,
which gives the addresses, codes and assembly language. It should
give you an inkling as to why an assembler is such an essential item
for the serious machine code programmer.

So far, so good. We can now type graphics characters, and return
to BASIC when we have finished with them. After playing with this
for a while, though, you begin to be irritated with the fact that you
can’t rub out any of the characters. The left-arrow key prints a
character rather than rubbing out, and the reason is not hard to find.
Whatever code number this left-arrow key provides has had $7F
added to it before it has been placed on the screen. What we need is
to detect this code, and make sure that the $7F is not added to it.
How do we do that?

The answer is, just as wedid before. We start by finding what code
the key returns. We can use the BASIC inkey$ loop for this as
before, and we come up with the number $08 this time. We will
therefore need a CMP A #3$08 step, and following ita BEQ, witha
jump to the step that follows the ADDA#S$7F. In this way, if the

Last Round-Up 117

7Fo1 I PRT

7Fo1 40 *KEYCHAR
7FQ1 BDBe@bL 5@ @GET JSR $8@
a6

7Fe4 27FR 60 REQ @GET
7FQ6 810X 7@ CMPA #3$0
3

7Fe8 27@7 8a BREQ @ouT
7FeA 8R7F 90 ADDA #%7
F

7FaC BRDRS4A 100 JSR $R54
A

7FOF 20FQ 110 BRRA @GET
7F11 29 12@ @0uT RTS
7F12 13e END @GET

Fig. 9.5. The printout from DASM, showing addresses and codes as well as
instructions.

code that is detected is SP8. then it is sent direct to the screen
memory rather than having $7F added first. Figure 9.6 shows the
result of this in assembly language. Now when we assemble and run
the program, it gives graphics characters for all keys apart from
BREAK and left-arrow. The BREAK key causes a return to
BASIC, and the left-arrow key causes deletion, as it usually does.
Now comes the challenge. What would you like this program to do.
and what modification will youhaveto make?I’ve pointed the way,
and shown you the methods - it’s up to you now.

The KEVYBEEP routine

Now we’ll look at a routine that makes use of more advanced
programming. The intention this time is to come up witha program
thatwillcauseashortbeeptosoundeachtime you pressakey. This
should happen when you are workingnormally in BASIC, so what
we need is a way of inserting a piece of extra machine code into
BASIC. This is quite a different matter from creating a machine
code program that runs and then returns to BASIC, and we have to
know rather more about the Dragon to be able to carry this out.

To start with, we have the problem of ‘breaking in’ to the routines
that BASIC uses. Fortunately, the Dragon uses one particularly
handy ‘junction box’. What I mean by a junction box is a piece of
code that is placed in the RAM rather than in the ROM. Any code

118 Introducing Dragon Machine Code

1@ CLEAR100, ¥H7F0@0@
20 EXECXHCFFA
3@ ALL:FML
4@ *KEYCHAR
50 @GET JSR $8006
6@ BEQ @GET
7@ CMPA #3$03
80 BER@ @0uT
F@ CMPA #s%08
100 BEQ @NOADD
110 ADDA #$7F
12@ @NOADD JSR $BS54A
13@ BRA @GET
14@ @0UT RTS
fa) 15@ END @GET

7Fe1 e PRT
7Fe1 40 *KEYCHAR
7F@1 BDSeas 5@ @GET JSR $8@
a6
7F@4 27FR s@ BEQ @GET
7F06 8103 70 CMPA #30
3
7Fe8 270R se BEQ @OUT
7FeA 8108 90 CMPA #30@
8
7Fec 2702 100 BEQ @NOA
DD
7F@E BR7F 11@ ADDA #$7
F
7F1@ BDRS4A 120 @NOADD JSR $
BS4A
7F13 20EC 130 BRA @GET
7F15 39 140 @ouT RTS

(b) 7F16 150 END @GET

Fig. 9.6. (a) The assembly language program that recognises the BREAK and
left-arrow keys, and (b) the appearance of the DASM assembler printout.

that is placed in the RAM can be changed, unlike code inthe ROM.
The purpose of this, in fact, is to allow changes to be made by
‘patching’. Patchinginthissensemeansinsertinga pieceof yourown
program into a routine which is used by the operating systemof the
Dragon.

Looking for a place to patch is the most difficult part of any
operation of this sort. There is one routine, located at $0A9 and
$PPAA, which can be used in this way. but it is executed only when

Last Round-Up 119

ENTER is pressed. This doesn’t quite suit our needs. because for a
KEYBEEP program, we want to break into a piece of program that
is executed each time a key is pressed. If youdon't havea listing of all
the Dragon code {(and 1 don’t). then the only way to proceed is by
some detective work. Here's what 1 did.

To start with, the operating system of the Dragon must make use
of two routines that we already know about each time a key is
pressed. One of these is the GETKEY routine, located at $8906 (in
ROM). and the other is the print-character routine, located at
$B54A. What we have to do is to look at the codes which start at
theseaddresses. You can look at thecodes in hex. but thisis tedious.
A much better idea is to use a program called a disassembler. This
converts the codes into assembly language. There are no labels
(though you can get labelling disassemblers for other micro-
computers). and vou will get peculiar results when the disassembler
tries to read data. like reserved words. Nevertheless. any
disassembcr. even a very simple one in BASIC (see. for example. the
article by Brian Cadge in Youwr Computer. May 1983) will be useful.

When a disassembler is used on these two sets of routines, the
GETKEY routine doesn’t look very promising. It has lots of JMP
commands, but they all appeartobetoaddressesinthe ROM. The
other routine, however, starts with a subroutine call, JSR $p167.
This isan address in the RAM, and it looks promising. It looks a lot
more promising when we disassemble round this address. All the
addresses from $Q15E to $0 1A8 contain the same byte, the $39
return-from-subroutine byte. This means that the whole of this piece
of RAM behaves like a sort of telephone exchange. Many of the
Dragon ROM routines must pass out to an address in this set. and
then return. This is where we can do our patching.

What we shall doisthis. At the address $0 167. we shall replace the
return byte $39 with three bytes. At$0167 we shall puta JMP byte,
and in the next two addresses we shall place bytes of an address. This
will be theaddress of a routine in RAM that we are goingto patch in.
If all is well, then. each time we press a key. our piece of machine
code will be run before the computer can go back to normal. If we
put the usual RTS byte at the end of our routine, then it will do
exactly what the RTS in the location $0167 did - send the
microprocessor back to the original routine. The routine that we're
going to patch in is a simple one. It will prepare the port, using the
simpler method of loading $BC into address $FF23, and then create
a beep, using the sound subroutine that we looked at earlier. The
port has to be loaded each time, because if it is not, then your

120 /Introducing Dragon Machine Code

10 CLEAR20Q, ¥H7F@e@

15 POKEXHFF23, 188

2@ EXEC&HCFFA

3@ ALL:FML

4@ @INCT EQU 359:@PORT EQU $FF2@

45 @KEYREEP EQU *

5@ LDD #@START

6@ STD @JINCT+1

62 LDA #$TE

64 STA @INCT

7@ RTS

8@ @START PSHS X.R.A

9@ LDX #$0F

10@ @REGIN LDA #$FC:RSR @REEP

110 LDA #$00: RSR @REEP

12@ LEAX —1,X

13@ BNE @REGIN

135 PULS X,R,A

14@ RTS

150 @REEP LDR #$4@

16@ @RACK STA @PORT

17@ DECR : BNE @RACK

18@ RTS
(@ 19@ END @KEYREEP

Fig. 97 (a).
keybeeps will stop when there is any kind of error report, such as a
syntax error.

Figure 9.7 shows the assembly language version of what we
have come up with. This has been produced by the DASM
assembler, so both the BASIC DASM lines, and the machine code
are shown. If you are going to use this in the form of a POKE
program, then youshould use the bytes that start with the group
CC7F @D at address 7F@1, and make sure that they are poked to
addresses that start at $7F0 I. If you want to use other addresses, the
code must be altered. The critical part is the address $7F@ D which
occurs in the first line. If you change the address at which this
subroutine starts, then the address of $7F D must also be changed.
It has to be the address at which the @START label is shown in the
assembly language version. The program follows the lines that you
might expect, but take particular heed of lines 11 and 189. These
make use of the system stack to save the contents of the X,A and B
registers. This is because our subroutine will change the bytes in
these registers, and it's highly likely that this would cause problems
in the main routine. By saving the contents of these registers on the
stack before the BEEP subroutine runs, and restoring them
afterwards, we ensure that the BEEP routine does not interfere with
the normal action. The system stack has been used because the user

7Fo1
167

FF2o
F2e
7Fo1

7Fo1
ART
7Fo4
T+l
7Fa7

7Fa9

7FacC
7FeD

CC7FeD

FDO168

867E

B70167

39
3416

XyByA

7FoF

{b) BEEP

BEQ@QF
B6FC
8DoR
8600
8pa7
301F
26F4
3516

39
Ccé64@

B7FF2@

SA
26FA

39

3e
40

45

Se

6@

62

64

7@
=1

100

100

110

11e

120

140
150

160

17@
17e

180
190

Last Round-Up 121

PRT
@JINCT EQU 35

@PORT EQU $F
@KEYBEEP EQU
LDD #esT
STD @JNC
LDA #$7E
STA @JINC

RTS
@START PSHS

LDX #$0F
@BEGIN LDA #
RSR @BEE
LDA #%00
BSR @BEE
LEAX -1,
BNE @BEG

PULS X,B

RTS
@BEEP LDB #$
@BACK STA @P

DECR
BNE @BAC

RTS
END @KEY

Fig. 9.7. The assembly language for a keybeep routine that sounds a note
whenever a key is pressed: (a) as typed for the DASM assembler and (b) the

printout from the DASM assembler,

122 Introducing Dragon Machine Code

stack register was pointing to an unsuitable address, and there
seemed to be no point in making the program longer by re-
addressing the user stack.

When this program is run, and EXEC used, you will find that you
get a beep when each key is pressed. If you don’t. perhaps you
forgotthat the sound comes from the loudspeaker of the TV, and so
the volume control of the TV has to be turned up! You'll find that the
ENTER key causes a much longer beep. and that listings are also
accompanied by beepings. It makes listings much slower also.
because of the time delays that are built into the sound part of the
routine. This could set you off on several new tracks. To start with,
could you make a program which would assista blind user, by giving
a different note for each key pressed? It would mean using the code
that is in the A register at the time when the registersare pushed to
modify the ‘pitch’ byte that we put into the B register. Another track
is that we could use this to have variable speed listings. Forget about
the sound routine, just have the X register used as a time delay.
taking its delay number from a spare piece of RAM. Toslowdowna
listing, you would only have to do a poke to this RAM.

Video tricks unlimited

We have seen that we can use machine code to carry out some
interesting and useful actions. but these have mainly concerned
sound so far. It’s time we looked at some of the possibilities thatare
presented by usingmachinecode for video tricks. The trouble here is
to know where to begin and, even worse, where to end. What you
can do in this respect is limited only by your knowledge of how the
video display of the Dragon operates, and by your curiosity in
exploring what can be done.

Let’s start. then, with a page-flicking trick. The Dragon uses a set
of addresses from $FFC6 to $FFD3 to control the video start
address. This means the address in memory of the byte that will
control the appearance of the top left-handcorner of the screen. For
the normal text screen, this address is $0409. for Page | it is $060 0
and so on - the addresses are given in your Dragon manual. The way
this is controlled is rather elaborate, by poking I's into these
addresses from $FFC6 to SFFD3, and the table in Fig. 9.8 shows
where the I's must be placed to achievedifferent values of starting
page address. What it amounts to is that it forms a seven-bit binary

Last Round-Up 123

START ADDRESS POKE 1 to addresses (in hex)

Denary Hex
512 209 FFD2, FFDP, FFCE, FFCC, FFCA, FFC8, FFC7
1024 49 FFD2, FFDP, FFCE, FFCC, FFCA, FFC9, FFC6
1536 60¢ F¥D2, FFD¢, FFCE, FFCC, FFCA, FFC9, FFC7
2048 809 FFD2, FFD@, FFCE, FFCC, FFCB, FFC8, FFC6

~

bit number (binary)

General Formula: [A|B|C|D|E[F|GC

Multiply this number by 512 (denary) to get start address

Set : FFD3 Reset : FFD2 (store 1 for action)
Set : FFDL Reset : FFDP (store 1 for action)
Set : FFCF Reset : FFCE
Set : FFCD Reset : FFCC
Set : FFCB Reset : FFCA
Set : FFC9 Reset : FFC8
Set : FFC7 Reset : FFC6

OmmE o WP

Fig. 9.8. The addresses that have to be poked to control the video addressing

number. whose value is then multiplied by 512 (denary) to give the
start address.

Now we can get some interesting. but not always very useful.
results by flicking from one page to another. You have probably
achieved this in BASIC and, for graphics, the same can be done in
machine code. The advantage of using machine code is that the
flicking can be faster, but this is not necessarily an advantage, as we
shall see. Something that you certainly can’t doin BASIC, however,
is to flick alternately between text and graphics. This looks like a
good one to attempt with machine code.

To start with, let’s see what we have to do. We shall have to put I's
into the right addresses. to start with. For a video display that starts
on the first high resolution page, we need to put the binary number
11 into the memory positions. This means putting a [into SFFC7.
and a | into SFFC9. We shall thenneed a time delay. to hold this
picture on the screen, and then we can change the number to 1§ by
placing a I into address SFFC6. If you can’t see why we're using
these numbers, then If) is denary 2. and 2*5121is 1924, the address of
the start of the textscreen. Binary 111s3, and 3*512 is 1536, the start
of page I of high resolution graphics. Figure 9.8 then shows where
we have to place I's to achieve these numbers 11 and 10.

This, however, isn’t enough, and we have to change the numbers
in another memory address. This one is $FF22. It must contain)
when the textscreenis being used, and $CP when the high resolution
PMODETI screen is being used. How did I find that one? Trial and

124 Introducing Dragon Machine Code

error - and it took a lot of trying. Once these are correctly placed,
though, we should be able to swap pages. We shall then need a time
delay so that the swapping isn’t too fast. That sounds like fairly
straightforward programming, and Fig. 9.9 shows the result.
After the usual CLEAR command, the GOSUBI@ in line 29
carries out the assembly of the machine code. This, once again, is in
DASM form. If you are assembling by hand, then the subroutine at
line 19 will consist of a loop that will POKE the code numbers into
memory, startingat &H7F@1, justas we have done earlier. When the
subroutine returns,a box is drawn on the high resolution screen, and
then line 5@ starts the flicking by calling the machine code routine.
The flicking is comparatively slow, and there is a reason for this. If
you attempt to flick fast, you will run into display difficulties. The
TV display consists of a dot movingacrossand down the screen,and
the whole action is repeated at 25 complete pictures per second. If
your flicking approaches this speed, there will be unpleasant
‘interference’ effects. You can imagine, for example, what could
happen if youswitched from one page to another while the spot was
halfway down the screen. Fast flicking, unless you can find just the

1@ CLEAR10Q, LH7F0@
20 GOSUB1@@
X@ PMODE1:COLOR2,3:PCLS
40 LINE(10,10)-(140,180),PSET,BF
50 EXEC&H7FQ1
&@ END
1@e@ EXEC&HCFFA
11@ @BEGIN PSHS X,Y
120 LDX #$FFC6
130 @SWITCH LDA #$@1:STA 1,X
140 STA I,X
144 LDA #$CO:STA $FF22
15@ BSR @DELAY
16@ STA @, X
164 LDA #$@@:STA $FF22
170 BSR @DELAY
180 JSR $8006
190 CMPA #$03
200 BNE @SWITCH
210 PULS X, Y
220 RTS
230 @DELAY LDY #$4FFF
240 @LOOP LEAY —1,Y
250 BNE €LOOP
260 RTS
27@ END @ BEGIN
(a) 28@ RETURN

7Fe1
7Fo1
X, ¥
TFO3
ce

TF¢

#s01
7Fe8
TFOA
7FecC

7FQE
2
7F11
AY
7F13
7F15

7F17
2
7F1A
Ay
7F1C
6
7F1F
3
7F21
TCH
7F23

7F25
7F26

2430
BEFFC6
8601
A701
A703
86Co
B7FF22
8D13

A784
8600Q

B7FF22
8DeA
BDB@@s6
8103
26E3
3530

39
108E4FFF

$4FFF

7F2A
1,Y
7F2C
P

7F2E
7F2F
(b} GIN

313F

26FC

39

105
1102

120
130
130
140
144
144
15@

160
164

164

17e

18@

190

200

210

220
23e

240

250

260
27@

Last Round-Up

PRT
@REGIN PSHS

LDX #$FF
@SWITCH LDA
STA 1,X
STA 3,X
LDA #$Co
STA $FF2
BSR @DEL

STA @,X
LDA #$00

STA $FF2
BSR @DEL
JSR #80@
CMPA #%0
BNE @SwI
PULS X,Y

RTS
@DELAY LDY #

@L00P LEAY —
BNE €L00

RTS
END @ BE

125

Fig. 9.9. (a) The assembly language as typedfor DASM, and {b)the printout
from the DASM assembler for a page-swapping program.

rightspeed, will therefore cause pictures thatappearbroken up,just

as if the TV was maladjusted.

Looking now at the assembly language, we begin (line 11§) by
pushingthe X and Y registers on to the stack. Thisisa precaution in
case these registers are being used by the main program, as is likely.
Lines 13¢ to 144 then place the correct bits and bytes into memory to
activate the high resolution screen. Line 150 then calls up the delay,

126 /Introducing Dragon Machine Code

and lines 160 and 164 cause the switch to the text screen again. After
another delay, the keypress routine in ROM is called. and tested to
see if the BREAK key is pressed. This. you remember. causes a $03
to appear in the A register. If the BREAK key is pressed, the
registers are restored, and the program returns to BASIC. If the
BREAK is not pressed, the loop repeats. It's a feature of machine
code programs that if you want to include a feature like stopping
with the BREAK key, then you have to program it - it doesn’t
happen automatically!

Blob-chaser’s delight

When all’ssaid and done, though, a lot of machine code effort goes
into games. and we'll end up by looking at the sort of thing thatisin
greatest demand - an object moving onthescreen. Now if we were to
explore every possibility of movement from descending aliens to
leaping frogs, we would need a book the size of War and Peace. We
have already broken the ground for this topic in earlier chapters,
where we dealt with the video screen addresses. and how we could
form shapes by poking numbers into memory. What we need to look
at now, then. is how we would moveashapearound. Theadvantage
of using machine code for this type of job is that the speed of BASIC
is no longer a limitation.

In accordance with the rule I have followed throughout - keep it
simple - I'll look at a simple move-a-blob program. What we shall
do is to define the memory we are going to use, with the ordinary
BASIC high resolution graphicscommands. We shall then see how
this blob can be moved about in the memory, and so on the screen.
Everything else is a variation on this, believe it or not. The idea is
that we take the start of a page of screen memory, and place its
address into the X register. We then load the accumulator with the
byte we want to display, and store it at the address in the X register.
By using X-indexed storing, with auto increment, we shall ensure
that the address in the X register increments after the store
operation. We then call a time delay, and blank out the image. Since
the address has been incremented, this has to be done by using a—1
inthe indexed instruction. Another delay follows, and thenthe loop
is repeated. We can bring the program to an end by comparing the
address in the X register with the end address of the video memory
for the PMODE that we have used.

Figure 9.10 shows the program in its BASIC plus DASM form,

Last Round-Up 127

1@ CLEAR10@,%&H7F@@:CLS
2@ PMODE1:SCREEN1,@
X0 GOSUR1@@:PCLS
40 EXECYH7F01
56 60TgSe
100 EXECYHCFFA
110 @START LDX #$600
120 @eL00P LDA #$0F
1@ STA o, X+
14@ RSR @DELAY
144 LDA #$0@:STA —1,X
146 BSR @DELAY
150 CMPX #$11FF
16@ BNE eLooP
17@ RTS
180G @DELAY LDY #$@SFF
196 @RACK LEAY -1,Y
200 BNE @RACK
21@ RTS
220 END @START
230 RETURN
Fig. 9.70. A blob-moving program in assembly language form, as written for
the DASM assembler

and Fig. 9.11 shows the printout from DASM, which gives you the
codes for a POKE program. By this time, you should be able to
follow what is going on in the program with no difficulty. What is
not so easy is to see where we go from there. Well, here’s your starter
for ten. If you make the X register increment by the number of
address positions in a line, the blob will appear to move vertically.
You cando that by using the command LEAX 80.X (forexample)in
place of the auto increment. The effect of LEAX 80.X will betoadd
80 (denary) to the value in X each time it is used. You then have to
arrange it so that the byte is stored, and after a time delay is wiped.
The LEAX step then moves you to the next vertical position, and the
process can be repeated. In each case, you can use STA §,X rather
than the X+ that was needed before. How do you move an object
that consists of several bytes? The answer is that you keep the bytes
inatable, and you carry out the storing and the wiping operations in
a loop each time. There’s very little that’s new to learn, except about
the hidden surprises that the Dragon keeps for you. As you go on,
though, you will accumulate experience, until you find that the
surprises are fewer, and you can find ways round them more easily.
When that time arrives, you’re entitled to call yourself an expert, a St
George of the computing world!

128

Introducing Dragon Machine Code

7Fo1

7Fo1 BE@&00
$600

7Fa4 860F
QF

7Fa6 A78@

7Fe8 8DeC
AY
7FoA 860

7FaC A71F

7F@E 8DO&
Ay

7F1@ 8C11FF
1FF

7F13 26EF
P

7F1S 39

*%¥7F16 10BEQSFF
#$A5FF

7F1A 313F

1,V

TF1C 26FC

K

7F1E 39
7F1F
RT

105
110 @START LDX #

120 @LO0OP LDA #%

13e STA @, X+
140 BSR @DEL
144 LDA #%00
144 STA ~1,X
146 BSR @DEL
15@ CMPX #%1
16@ BNE @L00
17@ RTS

18@ @DELAY LDY

190 @BACK LEAY -

200 BNE @BAC
21 RTS
22 END @STA

Fig. 9.11. The DASM printout, showing the hex codes.

Appendix A

How Numbers Are
Stored

The Dragon uses five bytes of memory to store any number. This
Appendix describes how numbers are stored, but if you have no
head for mathematics, you may not be any the wiser!

To start with, numbers are stored in mantissa-exponent form.
Thisisa form that isalsousedfor denary numbers. Forexample, we
canwrite the number 2169 @9 as 2.16 X 105 or the number.p PP 12 as
1.2 X 10™". When this form of writing numbers is used. the power
(of ten in this case) is called the exponent, and the multiplier (a
number greater than I and less than 1) iscalled the mantissa. Binary
numbers can also be written in this way, but with some differences.
To start with, the mantissa of a binary number that is written in this
form is always fractional, but no point is written. Secondly, the
exponent is a power of two rather than a power of ten. We could
therefore write the binary number Q1 1PP0p as IQ1IEIPPP. This
means a mantissa of [P 11 (imagineitas.1@11)and exponent of 100@
(2 to the power 8 in denary). There’s no advantage in writing small
numbers in this way, but for large numbers, it's a considerable
advantage. The number:

1191910009090 90099 099900

for example can be written as [19191 El 1000 (think of itas. 119101
X 224)

This scheme is adapted forthe Dragon,and other machines which
use Microsoft BASIC. Since the most significant digit of the
mantissa (the fractional part of the number) is always I when a
number is converted to this form, it is converted to a § for storage
purposes. The exponent has (denary) 128 added to it before being
stored. This allows numbers with negative exponents to be stored
without complications. since a negative exponent is then stored asa
number whose value is less than 128 denary. The Dragon uses four
bytes to store the mantissa of a number, and one byte to store the
exponent.

130 /Introducing Dragon Machine Code

To take a simple example, consider how the number 2 (denary)
would be coded. This converts to binary as 10109, which is
1Q19PPPP X 25, writing it with the binary point shown, using eight
bits, and with the exponent in denary form. The msb of the fraction
is then changed to @, so that the number stored is PP I10PPPQ.
Peeking this memory will therefore produce the number (denary) 32
in the mantissa lowest byte. Meantime, the exponent of 5 is in binary
10 1. Denary 128 is added to this, to make 1909@ 10 1. Peeking this
memory will give you 133 (which is 128+5).

Appendix B
Assembilers,
Disassemblers and
Monitors

An assembler is a program, on cassette or in cartridge form, which
will ‘assemble’ instructions that are in assembly language into
machine code. The machine code can then be recorded (using
CSAVEM) and used. A disassembler performs the opposite action
of operating on machine code to produce assembly language. A
simple disassembler. however, cannot distinguish between machine
code instructions and other bytes (suchas data). nor can it add labels
to the disassembled listing. A good disassembler for the serious
machine code programmer should allow hard copy (a disassembly
on the screen does not show enough of the listing to follow easily),
and should separate data from code. A listing disassembler is the
height of luxury. A monitor permits the contents of memory and the
6809 registers to be kept under surveillance, and can also be used in
editing and debugging programs.

There are several assemblers that are available for the Dragon at
the time of writing. The official Dragon assembler. DREAM, had
not appeared at the time of writing, and I used the excellent
DEMON/DASM package that is described in Chapter 8. This is
available from Compusense (see magazines for the address and
currentprices). As a disassembler, I used the BASIC program first
written by Brian Cadge. and published in Your Computer in the
May 1983 issue. A modified version of this program is included here
as Appendix H. lam grateful to the authorand to the Editor of Your
Computer for permission to reprint this listing. with my modifica-
tions.

Appendix C
Hex and Denary
Conversions

(a) Hex to Denary

For single bytes (two hex digits) -
Multiply the most significant digit by 16, and add the other digit.
For example:

$3D is 3*16 + 13 =61 denary

For double bytes (address numbers)

Write down the least significant digit. Now write under it the value
of the next digit, multiplied by 16. Under that, write the next digit,
multiplied by 256. Under that, write the next digit, multiplied by
4096.

For example:

SF3DB converts as follows:

Write Is digit 11
Next digit*16 is 13*16 208
Next digit*256 is 3*256 768

Next digit*4096 is 15*4096 61440
Now take the total, which is 62427

Denary to hex

For single bytes (less than 256 denary) -

Divide by 16. The whole part of the number is the most significant
digit. The least significant digit is the fractional part of the result
multiplied by 16.

For example:

Hex and Denary Conversions 133

To convert 155 to hex:

153/ 16 = 9.6875, so 9 is the most significant digit.

The least significant digit is .6875 * 16, which is 11. This
converts to hex B, so that the number is $9B.

Fordouble-byie numbers (numbers benween 256 and65535 denary)
Divide by 16 as before. Note the whole number part of the result,
and write down the fractional part, times 16, as a hex digit. Repeat
the action with the whole number part, until only a single hex digit
remains.

For example:

To convert 23815 to hex:

23815/16=1488.4375. Thefraction .4375*16 gives 7, and this is
the least significant digit.

Taking the whole number part, 1488/16=93.¢9. Since there is
no fraction, the next hex digit is §.

93/16=5.8125. The fraction .8125, multiplied by 16 gives 13,
which is hex D. This is the third hex figure. Since the whole
number part is less than 16 (it's 5), then this is the most
significant digit, and the whole number is $5D §7.

Appendix D
The Instruction Set

The instruction set of the 6809 is fairly large, and there will be many
instructions in this list which you may never need to use unless you
go in for very advanced programming indeed. A full description of
theaction of eachinstruction would take too much space. and sothe
action has beenindicated by abbreviations. In general. M means a
byte at an address in memory, and the registers are referred to under
their usual letter references. An arrow indicates where the result of
an action is stored. For example, A+M—A means that the byte in
the memory (addressed by the instruction) isadded to the byte in the
accumulator A. and the result is placed in the accumulator A. When
the double-byte registers are used in this way. two memory addresses
are necded. This has been indicated as M:M+I. Thismeansthat the
more significant byte is stored at the addresses memory M, and the
less significant byte at the next memory address, M+1. Where an
instruction needs a post-byte. this has been written as PB except for
indexed addressed operations. All indexed addressed operations
will require a post-byte.

The instruction codes are shown in columns graded by the
addressing method. These methods are Immediate, Direct Page,
Indexed. Extended. and Inherent. The Inherent addressing method
means that no special addressing is needed. C means the carry bit.
CC means the condition-code register. D is the double register
formed from A and B. All codes are in hex. For shifts, A has been
used to mean arithmetic shift, and L. to mean logic shift (see textfor
details).

The Instruction Set 135

Form Imm. DP. Indx. Extd. Inh. Description

ABX 3A B+X—X

ADCA 89 99 A9 B9 A+M+C—A
ADCB (9 D9 E9 F9 B+M+C-B
ADDA 8B 9B AB BB A+M—A

ADDB CB DB EB FB B+M—B

ADDD C3 D3 E3 F3 D+M:M+1-D
ANDA 84 94 Ad B4 — A AND M—A
ANBDB C4 D4 E4 F4 B AND M—B
ANDCC IC CC ANDM—-CC
ASLA 48 A.shiftleft A
ASLB 58 A.shift left B

ASL 08 68 78 A. shiftleft mem.
ASRA 47 A_shift right A
ASRB 57 A shift right B
ASR 07 67 77 - A shift right mem.
BITA 85 95 AS Bs A AND M change CC
BITB CSs D5 ES F5 B AND M change CC
CLRA - 4F 0—A

CLRB - 5F 9—B

CLR -0F 6F 7F —M

CMPA 81 91 Al Bl M-A,setCC
CMPB CI Di El Fl M-B.set CC
CMPD 1683 1993 19A3 10B3 M:M+1-DD, set CC
CMPS 118C 119C I11AC 1IBC M:M+1-S,set CC
CMPU 1183 1193 11A3 11B3 M:M+1-U. set CC
CMPX 8C 9C AC BC — M:M+1-X, set CC
CMPY 198C 199C 19AC 1¢¥BC M:M+1-Y, set CC
COMA 43 invert A

COMB 53 invert B

COM 03 63 73 - invert M

CWAL 3C CC AND M. wait.
DAA 19 Decimal adjust A
DECA 4A A-1—A

DECB — SA B-1-B

DEC A 6A 7A M-1-M

EORA 88 98 A8 B8 AEORM—A
EORB C8 D8 E8 F8 — BEORM—B
EXG IE - - - — R1=R2P Bexchange
INCA 4C A+—A

INCB 5C B+I—B

INC ¢C 6C 7C = M+1—-M

JMP OE 6E 7E = Jump to address

136 /ntroducing Dragon Machine Code

Form Imm. D.P. Indx. Extd. Inh. Description

JSR 9D AD BD Jump to subroutine
LDA 86 96 A6 B6 M—-A

1.DB C6 D6 E6 F6 M—B

LDD ccC DC EC FC M:M+1—-D

LDS 19CE 19DE (QEE IYFE M:M+1-S

LDU CE DE EE FE M:M+1—-U

LDX 8E 9E AE BE M:M+1—X

LDY 198E 199E 10AE 10BE M:M+1-Y

LEAS 32 - - M—S,PB

LEAU 33 M-U,PB

LEAX 30 M—X,PB

LEAY 31 M-Y .PB

LSLA — 48 L. left shift A
LSLB - - - 58 L. left shift B

LSL 08 68 78 L. left shift M
LSRA - 44 L. right shift A
LSRB — — - - 54 L. right shift B
LSR — 94 64 74 L/right shift M
MUL 3D A*B—D unsigned
NEGA — : 49 ~A—A

NEGB — — - - 50 —B—B

NEG 00 60 79 -M—M

NOP - 12 No operation
ORA 8A 9A AA BA = AORM—-A
ORB cA DA EA FA — BORM-B
ORCC A == CCORM—CC
PSHS — 34 Push to Sstack, PB
PSHU — — — — 36 Push to U stack, PB
PULS — — — 35 PullfromS stack, PB
PULU - — 37 Pulifrom U stack,PB
ROLA —; - = 49 rotateleft A

ROLB — — — — 59 rotate left B

ROL s 99 69 79 = rotate left M
RORA 46 rotate right A
RORB — — - 56 rotateright B

ROR — 06 66 76 — rotate right M

RTI — — - 3B Return from interrupt.
RTS 39 Return from subroutine.
SBCA 82 92 A2 B2 — A-M-C—A

SBCB C2 D2 E2 F2 - B-M—-C—B

SEX ID Extend sign B—A
STA — 97 A7 B7 - A—M

The Instruction Set 137

Form Imm. D.P. Indx. Extd. inh. Description

STB D7 E7 F7 — B—M

STD - DD ED FD D—M:M+1

STS — 19DF 10EF 19FF S—M:M+1

STU DF EF RE U—=M:M+1

STX - 9F AF BF X—=M:M+1

STY - 109F I1QAF 19BF Y—=M:M+1

SUBA 8¢ 99 AQ 1) A-M—A

SUBB Co D§ E¢ Fo B-M—B

SUBD 83 93 A3 B3 D-M:M+I—D

SWiI — — - 3F Softwareinterrupt [
SWI2 — 193F Softwareinterrupt2
SWI3 - 113F Softwareinterrupt3
SYNC - — 13 Synchronise to interrupt
TFR IF Exchange content, PB
TSTA - - 4D A-0,set CC

TSTB — - - 5D B—0,set CC

TST ¢D 6D 7D M-, set CC

Register exchange post-byte

The byte is formed from two halves. The upper half is a code forthe
source register, the lower half for the destination register. A four-bit
code is used to indicate the registers. The codes are as follows:

Register Code
D 30
X $1
Y $2
u $3
s $4
PC $5
A $8
B $9
cC A
DP $B

Forexample, ifthesource register was X and the destination U, then
theupper byte would be $1,and thelowerone3, makingthepost-byte

$13.

Appendix E
Addressing Methods of
the 6809

Each addressing method has the effect of using a byte in the
memory. The address at which this byte is stored is called the
Effective Address (EA). The purpose of any addressing method is to
make use of an effective address.

Immediate Addressing: The EA is the address that immediately
follows the instruction byte

Direci Page (DP) Addressing: Only the lower byte of the EA is given
in the instruction. The upper byte is contained in the DP register.
The DP register of the Dragon usually contains $0@, so that an
instruction using DP addressing with a byte of FB would make use
of the address $pPFB.

Indexed Addressing: A number isstored in one of the index registers
(X or Y). The effective address is this number plusany displacement
that is specified in the instruction. For example, LDA 5,X means
load the accumulator from the address which consists of the number
stored in the X register, plus 5.

Extended Addressing: The instruction is followed by two bytes,
which form a complete address. For example, LDA $563F means
that the accumulator is to be loaded from the address $563F.

Inherent Addressing: Theaddress is implied by the instruction, and
no special address reference is needed. For example, CLR B means
clear (zero) the B register, and no EA is needed.

Indirect Addressing: Several of the addressing methods can be used
indirectly. This means that the addressing method finds two bytes.
These in turn form the effective address. Indirect addressing should
be avoided by the beginner until its capabilities are well understood.
For that reason, it has not been used in this book.

Appendix F
A Few ROM and RAM
Addresses

Until a full disassembly of the Dragon ROM is available, not many
of the ROM addresses will be widely known. Aselectionof the most
useful addresses is shown below. Along with this, I have included
some useful RAM locations, with brief notes on what is stored there.

ROM Addresses

$8096

This scans the keyboard, and places the value found into the A
register. A= if no key is pressed.

$BS4A

This prints on the screen the character which isinthe accumulator.

$802!

This starts the motor of the cassette recorder.

$BI3E, $B999 and $8p 1B

These are all concerned with reading and writing tapes. They should
not be used by the beginner.

140 /Introducing Dragon Machine Code

RAM locations {All addresses in hex)

$17, 818 BASIC stack address.

$19, S1A Start of BASIC address.

$IB, $I1C Start of simple variable address.

31D, SIE Start of arrays address.

SIF, $2¢ Start of free space address.

$21. %22 Bottom of string space address.

$23, $24 Address of next available byte in string space.
$25. %26 Address of start of last string used.

$27. %28 Address of top of string space.

$2F. $30 Address of current line.

$33, $34 Address of nextbyte of DATA.

$35. 336 Address of next byte in keyboard buffer.

$74. 375 Address of top of memory. less 1.

$87 ASCII code of last key pressed.

$88. $89 Address of cursor in memory.

$8C Store pitch byte for SOUND.

$8D, $8E Store pitch*duration number.

$9D. $9E Address for EXEC.

$A6, $AT Address of BASIC program portion being executed.

$02DD-$03D4 Keyboard buffer space.

Appendix G
Magazines and Books

The problem of where you go from here is solved by looking at the
magazines and books that are available. The groundwork that this
book has supplied should allow you to go onto any of the books that
deal with 6809 programming, but which are not very useful to the
complete beginner. A look at the books available in your local
Computer store, or from suppliers such as Mine of Information (in
St Albans) will show you what is available.

Magazines are alsoa fruitful source of ideas. Personal Computing
World’s SUBSET series is a very valuable source of ideas in machine
code programming. Your Computer frequently prints articles on
machine code topics for the Dragon, and you should watch out for
listings which may reveal the use of ROM routines that you haven’t
met before. Remember thata lot of published information regarding
the Tandy Color Computer (known as COCO) applies to the
Dragon, and if you can gethold of a ROM disassembly for COCO it
will give you most of the addresses that you will need in your
Dragon.

Appendix H
A Useful Disassembler

A complete disassembler in machine code for the Dragon is not an
easy project, but this BASIC program is useful fora large amount of
the work that you can do on the Dragon ROM. It is based on the
program by Brian Cadge that appeared originally in Your
Computer, May 1983, and I am grateful to Mr Cadge and to the
Editor of Your Computer for permission to reproduce the program.
I have made some alterations to the original, which disassembled
between start and end addresses in denary. The amendments permit
astarting address to be entered in hex, and disassembly will continue
until the BREAK key is pressed. A few lines of disassembly are
shown on the screen, and remain untilany key other than BREAK is
pressed. This allows details to be copied if you have no printer. If
you are using a printer, you might like to remove this feature when
the printer option is taken. At each selection step, the ENTER key
must be used.

Remember that a comparatively straightforward program like
this cannot be expected to provide labels, nor to distinguish between
instructions and tables of data. The word ERR willappear when the
disassembler comes across a code that is not a valid instruction.
There are also some differences between the output of this program,
and the standards laid down by Motorola for 6809 assembly
language. These are:

I. Immediate addressing omits the # symbol.

2. Both DP and extended addresses are shown within round
brackets.

3. Indexed addressing, direct or indirect, uses square brackets.

Note that the ROM instructions start at $82F7, but there are
ASCII coded words and a few tables of numbers embedded in the

A Useful Disassembler 143

ROM at higher addresses. When you enter this program, pay
particular attention to the DATA lines. Each space and comma
must be entered as shown - do not be tempted to change any of
them.

1@ * 6809 DISASSEMELER RY CADGE
23 -
30 CLS:POKE 155,80:POKE 154,64:P
OKE 153,16:POKE 328.0:°SET UP PI
NTER
40 CLEAR S003:DIM A$(255,2)
S@ FOR 1=6 TO 25S:READ A$(1.@}.A
$(1,1) A% (1, 2) sNEXT
6@ PRINT"6809 DISASSEMBLER FOR D
RAGON 32¢
70 PRINT:PRINT: PRINT:SOUND 1291
: SOUND 156, 1: SOUND262a . 1
a0 PS=PEEK (£5314) AND1
23 INPUT"PRINTER (P) OR SCREEN ¢
S)";0PE: IF OP$<
THEN 92 ELSE IF
OF$="P"THEN PR=-2 E{SE PR=0
1@¢ IF PR=—2 AND PS=1 THEN FRINT
"ATTEND TO PRINTER!!":EXEC 41194
: 60102
112 INPUT"START ADDRESS IN HEX"3
AD$: AD=VAL ("%H"+AD$) : ST=AD
12 IF AD<@ OR AD>&SSIS THEN PRI
NT" INVALID ADDRESS — REDQ":GOTO7

CLS: PRINTRS00: PRINT#PR, " "
FDF’ I=AD TQ AD+14

LI=1

SH=2
V=PEEK (1)

IF Y=16 THEN SH=1:I=1+1:60TQ
IF =17 THEN SH=2:I=I+1:G60T0
7$=A% (V,SH) : X$=RIGHT$ (7%, 1)

IF X% AND X$<>"#" AND X
e AND X$ 2

2"/ THEN P$=Z¢% EL
SE P$=LEFT$ (Z$,LEN(Z$)-1)

144

Introducing Dragon Machine Code

220 IF PR=0 THEN PRINTHEX$(I)3TA
B{1@);P$s ELSE PRINT#PR, HEX$(I),

38 33
23a IF i$—"8“ THEN 390
240 IF X THEN 410
250 IF THEN 4%
266 IF THEN 460
270 IF THEN 49
280 IF THEN 720
299 IF X THEN 790
I060 IF " THEN 820
@ IF PR THEN 3S5@
@ PRINTH#FR, TAR)5 :FOR 3=

3
TO I HE$=HEX$ (FEE}K
E$)<2 THEN HE$="

(I3 IF LEN(H

SO PRINTHPR, "":NEXT
K$=INKEY$: IF E$=""THEN 3
IF ASC(K$) < HEN AD=1:G0TO01

386 PRINT#PR," ":END

3964 I=I+1:V=PEEL (I}:PRINT#FPR, HEX

EX{V]

400 6OTOZ1H

410 I=[+1:V=PEEK (I} *2S6+PEEK (141

Y2 I=1+1: PRINTH#PR,HEX$ (V)3

420 OTOS

43@ I=T+1:V=PEEK (I}

440 PRINTH#PR, " ("HEX$(V) ") "3

456 GOTOZ1G

460 I=I+1:V=PEEK () #2S6+PEEK (1+1

y:I=I+1

470 PRINTHPR, * ("HEX$ (V))

480 BOTOZ16e

49¢ I=I+1

S06 V=FEEK (1)

S10 PRINT#PR, “L"3
26 Y=V AND 94

Esm IF v=0© THEN Fs=

TG IF V= 4‘\4 THEN F$=
Sé\(! IF V=& THEN P$="g"
570 PRINT#PR.P$:" "3

A Useful Disassembler

S8 IF PEEK (I)>127 THEN 420 ELSE
N=PEEEK (1) AND 31

520 PRINTH#PR HEX$ (N) "1
@
&

:GOTO71

WA

2 V=PEEK (I}AND 159

416 IF V= 132 THEN PRINT#PR, "1
:GOTO710

424 IF V= 136 THEN PRINTH#PR, “+"3
1 GOTQI92

&30 IF V=177 THEN PRINTH#PR,"+"3:
GOTOo41e

640 IF V=134 THEN PRINTH#PR."+A1"
3:60T0710

THEN PRINT#PR,"+E1"
;69 IF V=139 THEN PRINT#PR,"“+D1"
;;0 IF v=128 THEN PRINT#PR." INC
6£8@ IF V=129 THEN PRINT#PR." INC
&£20 IF V=130 THEN PRINT#PR." DEC

THEN PRINT#PR," DEC

740 FOR J=7 TO @ STEP —1
73 IF V<INT(273) THEN P&=FP$+"0"
EL SE V=V-INT (273):Ps=Ps+"1"
762 NEXT
770 PRINTH#PR,P$" BIN";
780 GOTOI1@
790 I=1+1:VY=PEEK (I}
820 PRINTH#PR,HEX$ (V)3
810 GOTO21k
820 I=1+1:V=PEEK (1) *256+PEE¥K (I+1
yrI=I+1
Z0 PRINTH#PR,HEX$ (V)3
240 GOTOZI1e

145

146 Introducing Dragon Machine Code

ERR. . .ERR,,.COM
ROR $...ASR &

s

IMP $. . OLR &, SFT.
Fos«SYNC,, ERR.

SERR, (LIRRA X, LRGSR ¥,
8La DATA ER
RR.,,AND CC

EFT;. s NCI

R <. BRA " LEBER
/< BRN <L BRN /7 BHT

LS “,LELS / LB
LLELD 7 .
EBNE /.,

/B

274 DPATA BLT
T /¢.BLE " LBLE
Y >.:.LEA S >,
SLEA U > FSHS <, FULS <, FSH
o JPULY <L (ERR, L RTS, (ARY,
JRTI. CWAT oo

MUL ., sERR, . SWI 1.SWI 2,SWI I.NE
G A ERR. ., ERR,,.COM A, .

22¢ DATA LSKR A, . ERR,..ROR A, . A

SR A,,.ASL A,,.ROL A,,.DEC A,,.E
RR,..INC A.,,TST

A, ERR. . .CLR A, . NEG B, ERR,,
ERR, . ,ROR

JERR, COM R, LSRR
B, .ASR R, .. ASL
B . .ROL B, . DEC R §
L. TST B...ERR,..CLK B,,.NEG -, .
s <ERR, . .COM

29¢ DATA LSR
Sk };::QSL

A #...CMP A a
JSEC A #.,

A Useful Disassembler

9 DATA SUE D %.CMF D %
LAND A #, .. EBIT A #...LDA #
L. EQR A #.,,ADC

L :OR A #,,,ADD A #, CMP X
Y %.CMP S %.ESR -, ..LDX %,

oy
s JERR

LDY %,.ERR,,,SUE

At .CMP A $,..SEC A $,,,SUR D
$.,CMF D £, CMP U £ AND A ¢,,,EIT
A £,..1DA $.,..85

TA ¢, .

91é DaTA EOR A ¢,,.4DC A ¢,..0R

A t...ADD A &, . CMP X $,CMP Y ¢,

{DX ¢.1DY ¢,.8TX 3,8TY ¢,.SUR A
F21sCMP A 3., SBC A >, ,SUR D 4
L CMP U

L LDA A .. ,ST
L ADC A 3, ,,0R A

q"-"' DATA CMP X > CMP ¥ > CMP S >

”LDB *...EPP‘_.EHP B #,..,ADC E
#,,:0R B #,,,ADD B #_ .1 DD < ER
R... LD % LDS %,

sERR. . . SUB B $,,,CMP E $,,.,SRC R
$;;:ADD D ¢, ,,AND R &, . BIT R &

s

147

148 Introducing Dragon Machine Code

944 DATA LDER %, STR $..,EOR B ¢
s:<ADC B &, .O0R B $,.,..,ADD B %:..
LDD $..,STD $..:

LDU 4.1DS 4, ,STU ¢£.87S $.,SUR R

DB %, BIT B %
s<LDR %, STE %,:,EOR B &...ADC
B %2, ,:0R B ADD B %, .. LOD 3
sSTD &5 . L L

2,

Index

accumulator, 39
accumulator actions, 50

accumulator indexed addressing, 44

accumulator registers, 39
address bus, 38
addresses, 5

addressing method, 40
addressing methods, 137

arithmetic and logic group. 50

arithmetic left shift, 60
arithmetic set. 8

ASCII codes. 4
assembler, 27

assembler directives, 108
assemblers. 29

assembly by hand. 54
assembly language, 40
auto decrement. 45

auto increment, 45

BEQ. 53. 70

binary code, 3, 4

binary digit, !

binary number use, 28
binary-hex conversion, 31
Bit. 1

block diagram, 7

BNE, 53

books, 140

BRANCH commands, 46
branch displacements. 98
breakpoints. 99

British Standards, 62
byte. 3

carry flag. 48

CC register, 47
characier codes. 66
character set, 83
CLEAR, 55

CLOADM. 86

clock, 26

clock speed change, 26
CMP. 52

codes. 2

compiling, 25
complementing. 33
condition code register. 47
configuring port, 94

constant indexed addressing, 44

conversion, hex-binary, 31
counter variable, 74
counting loop, 74
CPU.7

crash, 55

creating patterns, 36
CSAVEM, 85

current address, 46
cursor control, 93

DASM, 29, 98

DASM assembler, 105
data bus, 38

data bytes, 27

data pins, 11
debugging, 97

DECB, 52

decision, 62

decision step, 69
declaring a variable. 15
DEMON, 29, 98
DEMON menu, 102
DEMON monitor. 101
denary number use, 28
denary to hex. 131
difficulties, 62

direct page addressing, 43
disassembler, 118, 141
displacement byte, 71
DP Register, 43

160 /ndex

dynamically allocated addresses. 16

end of program, 23
EXEC, S5

execution address, 84
exponent, 128
extended addressing, 42

faulty loop. 100
filcnamc. 84

flag register, 47
flowchart shapes, 63
flowcharts, 62
flowcharts for loops, 75

gates, 26, 38

garbage, 14

graphics keys program, 113
graphics memory, 35
graphics modes. 36

hashmark, 57

hex. 29

hex code advantages. 30
hex to denary, 131
hex-binary conversion. 31
hexadecimal. 29

holding loop, 74

immediate addressing. 41
INCA. 51

increment, S|

indexed addressing. 43
indirect addressing. 45
initialisation routine, 14
input. 62

instruction bytes. 27
instruction set, 32, 133
interpreted BASIC. 25
interrupt service routine, 111
interrupts, 96

JSR,73

jump set. 9

jump to subroutine, 73
junction box, 116

keybeep routine. 120
KEYBEEP routine, 16
KEYCHAR program, 113
keywords, 5

label, 70
least significant digit, 3

LET. 24

library. 83

line addresses, 23
line numbers. 23
list terminator. 87
load. 8

logic actions, 10
long branches. 46
loop. 69

loop flowchart, 69

machine code. S
magazines. 140
mantissa, 128

memory, |

memory addresses, 39
memory for graphics. 35
message [lowchart, 88
message routine. 89
mnemonics, 4
monitor, 100

most significant digit. 3
Motorola. 32

move a blob, 125
moving object, 125
MPU. 7, 26

multiply by two. 59

negative flag, 48

negative numbers. 32
nested loops. 76

number code. 4

number variable storage. I8

offset, 46
operand. 40
operator. 40
ORG. 57
output. 62

page-flicking, 121

patching, 117

planning grid for characters, 37
POKE. 17

port. 12,94

post-byte, 60, 78

practical programming, 54
print-a-character flowchart, 63
process, 62

program counter. 38

program storage, 21

pull. 56, 111

push, 56, 111

push/ pull post byte, 112

RAM locations. 139

RAM. 4

read signal. 38

reading. 11

reuxler exchange post bytes. 136
. 38

ROTATE. 50
RTS. 55

scan Kevboard. 73
screcndisplays. 34
SHIFT. 50

short branches. 46
signed number. 34

simple loop in BASIC. 74
sound routine. 95

smmng address, 24, 84
states. 2

status register, 47

store. 8

string address. 21

string variable storage. 19
string VLT entry, 20

Index

subroutine library. 99
subroutines, 6. 14
SUBSET scries. 99
switch, |

system reset. [7

system stack. 111
system usc of RAM. |5

terminator, 62
terminator. list. 87
test and branch. 53
text memory, 65

text screen memory. 34
te xt space, 87

time delay, 74

token, 4

two loop counter. 77
two’s complement, 33
two-line signalling, 2

unsigned number, 34
user stack. 11

variable list table. 1S
VARPTR, 2]

VARPTR use. 92

video display addresscs. 80
VLT IS

Zcro flag. 48

151

MORE SPEED, MORE POWER AND GREATER CONTROL!

Sooner or later most users feel restricted by BASIC's
limitations such as the slow speed of some commands -
particularly when fast animation of graphics is

concerned - and the limited control over the machine. For
really fast operation and full mastery over the machine,
making special effects such as new graphics modes
possible, the best answer is machine code.

Machine code consists of number codes which affect the
microprocessor of the computer directly. The use of

hine code by-p BASIC altogether, so that the
instructions which you write and use in machine code will
exert direct control over your Dragon. This book assumes
nothing more than a reasonable knowledge of BASIC. You
are shown what machine code is, how it works, and how
to enter, run and save code. In the course of reading this
book, you will learn much more about how the Dragon
works. You will also discover how versatile you can
become, as a whole new world of special effects opens
up. The vital aids to efficient machine code writing are
also covered, for you to go further with this fascinating
subject. Many who do so never return to BASIC again!

The Author

lan Sinclair is @ well known contributor to journals such as
Personal Computing World, Computing Today, Electronics
and Computing Monthly, Hobby Electronics and Electronics
Today International. He has written over forty books on
electronics and computing aimed mainly at the beginner.

MorebooksforDragon usersfrom Granada

THE DRAGON 32 BOOK OF GAMES THE DRAGON 32
Mike James, S M Gee and Kay Ewbank And How to Make the Mos? of i

0246121025 lan Sinclair
DRAGON GRAPHICS AND SOUND 02412149
Steve Money THE DRAGON PROGRAMMER
0246121475 SMGee
0246121335

PUBUISHING

S r Goawr Brman

£7.95 net

340D ANIHOVW NOOV A ONIDNAOYULNI oV [ONS

uo

	1
	lc-n001
	lc-n002
	lc-n003
	lc-n005
	lc-n006
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	z

